|
15 |
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
18 |
|
|
|
|
|
|
|
|
|
|
|
295 |
|
75 |
equations with
Separable Variables |
|
. 257 |
|
77 |
Exact Differential
Equations |
|
262 |
|
74 |
First-order
Differential Equations |
|
256 |
|
|
(See also Differential
equations) Ordinary discontinuity, 64 Origin of a vector, 393 Orthogonal
curves, 277, 468 Orthogonal functions, 81, 339, 345 Orthogonal systems, 434
^Orthogonal trajectories, 277-279 Orthogonal vectors, 398 Oscillation of a
spring, 299 Oscillatory motion, 304 Overdamped, 303 |
|
|
|
157. |
* Precision Constant. Probable Error |
|
521 |
|
|
. 478, 480-484 |
|
|
|
|
06a |
|
|
|
|
|
|
|
|
|
06b |
|
|
|
|
|
|
|
|
|
07a |
|
|
|
|
|
|
|
|
|
07b |
|
|
|
|
|
|
|
|
|
08a |
|
|
|
|
|
|
|
|
|
08b |
|
|
|
|
|
|
|
|
|
09a |
|
|
|
|
|
|
|
|
|
09b |
|
|
|
|
|
|
|
|
105 |
105. Elimination of Arbitrary Functions. |
. |
.... |
|
|
10a |
|
|
|
|
|
|
|
|
|
10b |
|
|
|
|
|
|
|
|
|
11a |
|
|
|
|
|
|
|
|
|
11b |
|
|
|
|
|
|
|
|
129 |
129 Physical Interpretation of Divergence and Curl |
|
423 |
|
|
12a |
|
|
|
|
|
|
|
|
|
12b |
|
|
|
|
|
|
|
|
|
13a |
|
|
|
|
|
|
|
|
|
13b |
|
|
|
|
|
|
|
|
|
14a |
|
|
|
|
|
|
|
|
|
14b |
|
|
|
|
|
|
|
|
96 |
96. Variation of Parameters |
. |
. 318 |
|
97 |
97. The Euler Equation |
|
322 |
|
|
A |
|
|
|
168. |
A More General Formula |
|
558 |
|
86. |
A Non-linear Equation Reducible to Linear Form (Bernoulli’s |
|
|
|
86. |
A Non-linear Equation Reducible to Linear Form (Bernoulli’s |
|
|
|
|
Absolute convergence of series, lb, 17, 20, 21 |
|
|
|
|
Absolute value of complex number, 441 |
|
|
|
117. |
Addition and Subtraction of Vectors |
|
393 |
|
441 |
Addition, of series, 21 of vectors, |
|
|
|
|
Addition, of series, 21 of
vectors, 393 parallelogram law of, 394 Adiabiftic process, 224 Aerodynamics,
133, 431 Algebra, fundamental theorem of, 92 Algebraic theorems, 92-94
Alternating series, 15 am i/, 51 |
|
|
|
394 |
Adiabiftic process, 224
Aerodynamics, 133, 431 Algebra, fundamental theorem of, 92 Algebraic
theorems, 92-94 Alternating series, 15 am i/, 51 |
|
|
|
6 |
Algebra of Series |
. |
21 |
|
26. |
Algebraic Solution of Cubic |
|
86 |
|
4. |
Alternating Series |
|
15 |
|
|
Amplitude of complex number, 441
Amplitude function, 51 Analysis, harmonic, 545 Analytic functions, 451-491
Angle, as a line integral, 195 direction, 146, 398 of lap, 240 of twist, 485
solid, 195 |
|
|
|
|
Angular velocity, 61, 191, 236, 404, 424 |
|
|
|
|
Answers |
. . |
561 |
|
12. |
Application of Taylor’s Formula |
|
41 |
|
|
Applications of Conformal Representation. |
. . |
479 |
|
121. |
Applications of Scalar and Vector Products |
|
404 |
|
|
Applications, of conformal
representation, 479-491 of line integrals, 217-224 of scalar arid vector
products, 404-406 |
|
|
|
|
Approximate formula, for n!, 509
for probability of most probable number, 511 |
|
|
|
16 |
Approximate Formulas in Applied Mathematics |
|
55 |
|
155. |
Approximations to Binomial Law |
|
512 |
|
|
Approximations to binomial law,
512 Arc length, 143 of ellipse, 47 |
|
|
|
|
approximations to, 512 Binomial
series, 40 Biot and Savart, law of, 52 Boundary conditions, 242, 351, 363,
370 |
|
|
|
|
Arc length, of sinusoid, 55 Area, 172 |
|
|
|
61. |
Area of a Closed Curve |
|
199 |
|
|
Argument of complex number, 441
Associative law, for series, 18 for vectors, 394 |
|
|
|
|
around a closed curve, 202, 206, 216, 421 |
|
|
|
|
as a double integral, 178 as a
line integral, 190-202 element of, 183, 184, 190, 437 positive and negative,
200 surface, 188-196 |
|
|
|
|
Asymptotic formula for a1, 509
Asymptotic senes, 524 Atmosphere, thickness of, 61 Attraction, law of, 218,
232 motion under, 58, 218 of cone, 196 of cylinder, 196 of sphere, 196, 232
Augmented matrix, 118 Auxiliary equation, 292 Averages, method of, 534 Axes,
right- or left-handed, 397 |
|
|
|
|
B |
|
|
|
|
Base vectors, 396 Beam, 240-242,
307 Belt on pulley, slipping of, 239 Bending moment, 241 Bernoulli-Euler law,
241, 307 Bernoulli’s equation, 286 Bessel functions, 273, 336, 381 expansion
in, 339 Bessel's equation, 332, 380 Beta function, 27*6 Binomial law, 502 |
|
|
|
100. |
Bessel’s Equation |
|
332 |
|
|
Buckling, 299 |
|
|
|
|
c, 42 c'xy 250 |
|
|
|
|
Cable, flexible, 244 flow of
electricity in, 386 supporting horizontal roadway, 242 |
|
|
|
|
Cartography, 479 Catenary, 247, 252. |
|
|
|
|
Cauchy- Riemann equations, 221, 450, 455 |
|
|
|
|
Cauchy’s equation, 322n. |
|
|
|
140. |
Cauchy’s Integral Formula . . |
|
461 |
|
|
Cauchy’s integral formula, 401
Cauchy’s integral test, 12 Cauchy’s integral theorem, 455 Center of gravity,
177, 182, 183, 187, 190, 191, 196, 522 |
|
|
|
137. |
Cauchy’s Integral Theorem |
|
455 |
|
137. |
Cauchy’s Integral Theorem |
|
455 |
|
|
Change of variables, in derivatives, 154 |
|
|
|
|
Chapter 1 |
|
|
|
|
Chapter II FOURIER SERIES |
|
|
|
|
Chapter II FOURIER SERIES |
|
|
|
|
Chapter III |
|
|
|
|
Chapter III |
|
|
|
|
Chapter IV |
|
|
|
|
Chapter IV |
|
|
|
|
Chapter IX VECTOR ANALYSIS |
|
|
|
|
Chapter IX VECTOR ANALYSIS |
|
|
|
|
Chapter V |
|
|
|
|
Chapter V |
|
|
|
|
|
Chapter VI LINE INTEGRAL |
|
|
|
|
Chapter VI LINE INTEGRAL |
|
|
|
|
Chapter VII |
|
|
|
|
Chapter VII |
|
|
|
|
Chapter VIII |
|
|
|
|
Chapter VIII |
|
|
|
|
Chapter X |
|
|
|
|
Chapter X |
|
|
|
|
Chapter XI PROBABILITY |
|
|
|
|
Chapter XI PROBABILITY |
|
|
|
|
Chapter XI PROBABILITY |
|
|
|
|
Chapter XII |
|
|
|
|
Chapter XII |
|
|
|
|
Chapter XII |
|
|
|
|
Coefficients, Fourier, 65
metric, 437 Cofactor, 111, 112 Combinatory analysis, fundamental principle
of, 493 |
|
|
|
|
Commutative law, 394, 399, 400
Comparison test for series, 9 Complementary function, 290, 292 Complete
elliptic integrals, 48 Complex number, 440 absolute value of, 441 argument
of, 441 conjugate of, 444, 488 vector representation of, 440 Complex roots of
unity, 87 |
|
|
|
|
22. |
Complex Form of Fourier Senes |
|
78 |
|
133. |
Complex Numbers . |
|
440 |
|
|
COMPLEX VARIABLE |
|
|
|
|
COMPLEX VARIABLE |
|
|
|
|
Complex variable, 440-491
functions of, 444-491 analytic, 451-491 derivative of, 449 integration of,
453 line integral of, 454 Taylor’s expansion for, 464 Components of force,
217 Composite function, 134, 137 Condenser, 283, 299, 305, 308, 387
Conditionally convergent series, 16, 17, 21 |
|
|
|
|
conditional, 16, 17, 21 interval of, 31, 33 of series, 4, 7 |
|
|
|
|
Conditions, Cauchy-Riemann, 221, 450, 455 Dirichlet, 65 |
|
|
|
142. |
Conformal Mapping .... |
|
465 |
|
|
Conjugate functions, 468, 470
Conservation of matter, law of, 429 Conservative field of force, 219, 411
Consistent systems of equations, 117-122 |
|
|
|
|
conservative, 411 electrostatic,
475, 477, 479 irrotational, 418 Finite discontinuity, 64 Fitting, curve,
525-560 Flexure, 298 |
|
|
|
35 |
Consistent and Inconsistent Systems of Equations |
|
117 |
|
|
consistent, 117-122 dependent, 105 differential, 225-391
Euler’s, 430 |
|
|
|
161. |
Constants Determined by Method of averages |
|
534 |
|
50. |
Constrained Maxima and Minima |
|
163 |
|
7. |
Continuity of Functions Uniform Convergence |
|
23 |
|
|
Continuity, equations of, 221, 429, 481 |
|
|
|
|
Convergence, absolute, 16, 17, 20, 21, 33 |
|
|
|
|
Coordinates, ellipsoidal, 433 parabolic, 439 |
|
|
|
|
|
cos x, 46, 250 cosh, 247 |
|
|
|
|
Cosine, hyperbolic, 247 power
series for, 38, 40 Cosine series, 73 |
|
|
|
|
Cosines, direction, 146, 147,
151, 188, 194, 398 coth, 249 Cramer’s rule, 113 Cross product, 400 Cubic
equation, algebraic solution of,#86 |
|
|
|
126. |
Curl of a Vector |
|
418 |
|
132. |
Curvilinear Coordinates |
|
433 |
|
|
Cylindrical coordinates, 152, 185, 190, 191, 378, 386, 434,
438 |
|
|
|
|
D |
|
|
|
|
Dam, gravity, 483 Damping, viscous, 302* |
|
|
|
|
Dead-beat motion, 304
Decomposition of vectors, 396 Definite integrals, 172 change of variable m,
183-188 evaluation of, 172 mean-value theorem for, 21071. Deflection, 299 |
|
|
|
118. |
Decomposition of Vectors. Base Vectors |
|
396 |
|
52. |
Definition and Evaluation of the Double Integral |
|
173 |
|
60. |
Definition of Line Integral |
|
197 |
|
|
definition of, 197, 454
evaluation of, 202-206, 458 for angle, 195 for area, 201 for work, 217 in
space, 215, 410, 421 properties of, 206-217 transformation of, 202, 421
Linear dependence or independence, 116, 317 |
|
|
|
|
Degree of differential equation, 225 Del, V (see Nabla) |
|
|
|
|
Delta amplitude, dn, 51 De Moivre’s theorem, 90, 442 |
|
|
|
|
Dependence, functional, 2 linear, 116 |
|
|
|
|
Dependent events, 495 Derivation
of differential equations, 231-247 Derivative, 125 directional, 143, 151, 219
normal, 144, 146, 152 of functions of a complex variable, 449, 452, 463 |
|
|
|
|
|
derivation of, 351 |
|
|
|
31. |
Determinants of the nth Order. |
|
100 |
|
31. |
Determinants of the nth Order. |
|
106 |
|
30. |
Determinants of the Second and Third Order |
|
102 |
|
159. |
Differences |
|
527 |
|
80. |
Differential Equations of the Second Order |
|
269 |
|
|
Differential equations, 225-391
Bernoulli’s, 286 Bessel’s, 332, 380 Cauchy-Ricmann, 221, 450, 455 Cauchy’s,
322n. definition of, 225 degree of, 225 derivation of, 231-247 Euler’s, 322,
430 exact, 262 first order, 256, 267 Fourier, 425 |
|
|
|
|
Differential equations, general
solution of, 230, 290, 292, 350, 358 homogeneous, 259, 2G1 homogeneous
linear, 290 integral curve of, 22(5, 228 integrating factor of, 205
Laplace’s, 309, 382, 385, 386, 439, 451, 470, 481 Legendre’s, 342, 384
linear, 226, 283-349, 357 numerical solution of, 346 of electric circuits,
301, 305, 386 of heat conduction, 367 of membrane, 377 of vibrating spring,
308 of vibrating string, 361 order of, 225 ordinary, 225-349 partial, 225,
350-391 particular integral of, 290, 292, 297, 318, 359 particular solution
of, 230 second order, 269, 295 separation of variables m, 257 simultaneous,
312-315 singular solution of, 279 solution m series, 228, 325, 349, 364 |
|
|
|
|
Differential expression, 225
Differential operators, 287-299, 357, 406 |
|
|
|
122. |
Differential Operators |
|
406 |
|
|
differential, 287-299, 357, 406 vector (see Curl; Divergence; |
|
|
|
|
Differential, exact, 211, 212,
216, 222, 224, 262, 411, 418, 420 of area, 184, 190 of volume, 185, 187, 190
partial, 128-143 total, 127-143 |
|
|
|
23. |
Differentiation and Integration of Fourier Scries |
|
80 |
|
41. |
Differentiation of Implicit Functions . |
|
137 |
|
51. |
Differentiation under the Integral Sign |
|
167 |
|
|
Differentiation, of implicit functions, 132-142 |
|
|
|
18. |
Dinchlct Conditions. Derivation of Fourier Coefficients ....
65 |
|
|
|
18 |
Dinchlet Conditions. Derivation fourier coeficients |
|
65 |
|
|
Direction angles, 146, 398
Direction components, 146 Direction cosines, 146, 147, 151, 188, 194, 398 |
|
|
|
|
|
direction cosines of, 146, 147,
151 normal, 144, 146-149 of equal potential, 277 of flow, 475 stream, 277,
432, 467 tangent, 143, 147, 151 vector equation of, 395 Line integrals,
197-224, 410, 421, 454 |
|
|
|
|
Direction ratios, 150, 151
Directional derivative, 143, 151, 219 (See also Gradient) |
|
|
|
42. |
Directional Derivatives |
|
143 |
|
45. |
Directional Derivatives in Space |
|
151 |
|
|
Dirichlet conditions, 65
Discharge of condenser, 299 Discontinuity, finite, 64 Discriminant of cubic,
89 Distance, element of, 435 Distribution of charge, 487 Distribution charts,
506 Distribution turve, 504, 516 Distributive law, 399, 400 Divergence, of
senes, 5, 8, 20 / of a vector, 411, 423, 438 Divergence theorem, 191, 415,
425, 428 dn uf 51 |
|
|
|
15 |
Discussion of Elliptic Integrals |
. |
48 |
|
15 |
Discussion of Elliptic Integrals |
. |
. . 48 |
|
152. |
Distribution Curve |
|
504 |
|
152. |
Distribution Curve |
|
504 |
|
124. |
Divergence of a Vector |
|
411 |
|
125. |
Divergence Theorem |
|
415 |
|
|
Dot product, 399 |
|
|
|
|
Double integrals, 173, 192, 202,
275 Drying of porous solids, 369 Dynamics, laws of, 231 |
|
|
|
|
E |
|
|
|
|
Effects, superposition of, 129,
223 E{k, <p), 48-51, 54 Elastic curve, 240, 307 Elasticity, 241, 422,
484-486 Electrodynamics, 422, 423n. Electron, 315 |
|
|
|
|
Electrostatic field, 475, 477,
479 Electrostatic force, 487 Electrostatic potential, 487 Electrostatics,
486-491 Element, of arc, 467 of area, 184, 190, 437 of distance, 435 of
volume, 185, 187, 190, 437 Elementary functions, 315 expansion of, 35-46, 65-82,
465 Ellipse, area of, 177, 202 center of gravity of, 177 length of arc of, 47
Ellipsoidal coordinates, 433 Elliptic functions, 51 |
|
|
|
|
134. |
Elementary Functions of a Complex Variable . |
|
444 |
|
105. |
Elimination of Arbitrary Functions. |
|
. |
|
|
Elliptic integrals, 47-55 complete, 48 |
|
|
|
|
EMPIRICAL FORMULAS AND CURVE FITTING |
|
|
|
|
EMPIRICAL FORMULAS AND CURVE FITTING |
|
|
|
|
EMPIRICAL FORMULAS AND CURVE FITTING |
|
|
|
130. |
Equation of Heat Flow |
|
425 |
|
|
Equation) |
. |
286 |
|
|
Equation) |
. |
. 286 |
|
131. |
Equations of Hydrodynamics |
|
428 |
|
79. |
Equations of the First Order in Which One of the Variables
Does |
|
|
|
79 |
Equations of the First Order m Which One of the Variables Does |
|
|
|
|
Equations with Separable Variables |
|
257 |
|
|
Equations, Cauchy-Uiemann, 221, 450, 455 |
|
|
|
|
Error function, 516 |
|
|
|
|
Error, Gaussian law of, 520, 536
mean, 516 mean absolute, 522 mean square, 522 of observation, 516 probable,
521 small, 56 |
|
|
|
|
Euler equation, 322 Euler
formulas, 78, 251 Euler’s equations, 430 Euler’s theorem, 136 Evaluation of
integrals, by differentiation, 169 m series, 43-46 Even function, 68 Events,
dependent, 495 independent, 495 mutually exclusive, 497 Exact differential,
211, 212, 216, 222, 224, 262, 411, 418, 420 Exact differential equation, 262
Expansion, in Bessel functions, 339 in Fourier series, 65-82 m Legendre
polynomials, 346 in Maclaunil’s series, 37 in power series, 37-46 in Taylor’s
scries, 37 m trigonometric series, 65 uniqueness of, 38 Expectation, 500 |
|
|
|
40. |
Euler's Formula |
|
130 |
|
13 |
Evaluation of Definite Integrals by Means of Power Series ... |
|
43 |
|
|
evaluation of integrals by, 43-46 Fourier, 63-82 infinite,
1-62 |
|
|
|
145 |
Examples of Conformal Maps . |
|
471 |
|
99. |
Existence of Power Series Solutions |
|
329 |
|
101. |
Expansion in Series of Bessel Functions |
|
339 |
|
19 |
Expansion of Functions in Fourier series |
|
67 |
|
11. |
Expansion of Functions in Power Series |
|
35 |
|
150. |
Expectation. . |
|
500 |
|
|
Expected number of successes,
508 Exponential form for trigonometric functions, 78, 251, 446, 447
Exponential function, expansion for, 42, 446 |
|
|
|
138. |
Extension of Cauchy’s Theorem |
|
455 |
|
138. |
Extension of Cauchy’s Theorem |
|
455 |
|
21. |
Extension of Interval of Expansion |
|
76 |
|
|
Extremal values, 164 Extremum, 164 |
|
|
|
|
F |
|
|
|
|
F(k, <?), 48-55 Factor,
integrating, 265 Factor theorem, 92 Factonal, n!, approximation for, 509 (See
also Gamma functions) Falling body, 58, 232 Field, 406 |
|
|
|
|
first kind, F(k, *>), 48-55,
238 second kind, E(k, <*>), 48-54 third kind, II(n, k} <p), 50
Empirical formulas, 525-500 Entropy, 224 Envelope, 279 Equation, auxiliary,
292 Bernoulli’s, 286 Bessel’s, 332, 380 characteristic, 292 cubic, 80 Euler,
322 Fourier, 425 indicia!, 334 integral, 347 |
|
|
|
115. |
Flow of Electricity in a Cable . . |
|
386 |
|
|
Flow, of a liquid, 220, 424, 428, 477, |
|
|
|
|
for exact differential, 212, 216
Conductivity, 367, 426 Conductor, 486, 489 Conformal mapping, 465, 471
Conformal representation, applications of, 479-491 Conformal transformation,
467 Conjugate of a complex number, 444, 488 |
|
|
|
|
for functions of one variable,
158 for functions of several variables, 160 |
|
|
|
92. |
Forced Vibrations . |
|
308 |
|
109. |
Fourier Series Solution . |
|
364 |
|
|
Fourier, 425 |
|
|
|
36 |
Functions of Several Variables |
|
123 |
|
1. |
Fundamental Concepts |
|
1 |
|
147. |
Fundamental Notions |
|
492 |
|
147 |
Fundamental Notions |
|
492 |
|
|
fundamental principle of, 6 limit of, 3 |
|
|
|
72 |
Further Examples of Derivation of Differential Equations |
|
239 |
|
81. |
Gamma Functions |
|
272 |
|
|
general, 230, 290, 292, 350, 358 particular, 230 |
|
|
|
53. |
Geometric Interpretation of the Double Integral |
|
177 |
|
|
geometric interpretation of, 177
Multiplication, of complex numbers, 442 |
|
|
|
|
Gradient; Nabla) |
|
|
|
158. |
Graphical Method . |
|
525 |
|
|
graphical solution of, 83 Curl,
418, 422, 423, 438 Current, 386, 427 Curve, distribution, 504, 516 clastic,
240, 307 map of, 466 Curve fitting, 525-560 Curves, integral, 226, 228, 279
orthogonal, 277, 468 Curvilinear coordinates, 433-439 Cylinder functions (see
Bessel functions) |
|
|
|
25. |
Graphical Solutions |
|
83 |
|
62. |
Green’s Theorem for the Plane |
|
202 |
|
58. |
Green’s Theorem in Space |
|
191 |
|
164. |
Harmonic Analysis |
|
545 |
|
110. |
Heat Conduction |
|
367 |
|
89. |
'Hie Meaning of the Operator |
|
|
|
46. |
Higher Partial Derivatives |
|
153 |
|
|
hofnogeneous linear, 119-122 non-homogeneous linear, 113-119 |
|
|
|
|
Homogeneous Differential equations |
|
259 |
|
76 |
Homogeneous Differential Equations |
|
. 259 |
|
28. |
Horner’s Method |
|
95 |
|
73 |
Hyperbolic Functions |
|
247 |
|
66. |
Illustrations of the Application of the Line Integrals |
|
|
|
66. |
Illustrations of the Application of the Line Integrals . |
|
. 217 |
|
|
in applied mathematics, 55
Approximation, Laplace’s or normal, 515 |
|
|
|
|
in integrals, 183-188
Characteristic equation, 292 Charge, distribution of, 487 Charts,
distribution, 506 Chemical reaction, 258 Circular functions, 247 Circulation,
of a liquid, 475, 477 of a vector, 418, 419 Closed curve, area of, 199-201
direction around, 200 integral around, 201, 203, 206, 216, 421 simple, 200 cn
w, 51 |
|
|
|
|
inconsistent, 105, 117-122 normal, 537, 540 |
|
|
|
|
Index |
. |
575 |
|
|
Index |
|
575 |
|
|
INFINITE SERIES |
|
|
|
78 |
Integrating Factors |
|
265 |
|
|
integration and differentiation of, 29, 33, 34 |
|
|
|
136. |
Integration of Complex Functions .... |
|
453 |
|
106. |
Integration of Partial Differential Equations. |
|
353 |
|
|
integration of, 353 |
|
|
|
165. |
Interpolation Formulas |
|
550 |
|
13 |
J.3. Evaluation of Definite Integrals by Means of Power Series
... 43 |
|
|
|
55. |
Jacobians. Change of Variable |
|
183 |
|
166. |
Lagrange’s Interpolation Formula |
|
552 |
|
|
Lagrange’s interpolation formula, 552 |
|
|
|
|
Lagrange’s method of multipliers, 163-167 |
|
|
|
|
Lamellar field, 423 Laplace’s
approximation, 515 Laplace’s equation, 195, 369, 382, 385, 386, 439, 451,
470, 481 Law, Bernoulli-Euler, 241 binomial, 502, 512 of attraction, 218 of
conservation of matter, 429 of cooling, 254 of dynamics, 231 of error, 520,
536 of gravitation, 232 of small numbers, 512 Least squares, method of, 536
theory of, 521 |
|
|
|
114. |
Laplace’s Equation |
|
382 |
|
|
Laplace’s, 195, 309, 382, 385,
380, 439, 451, 470, 481 Legendre’s, 342, 384 of continuity, 221, 429, 481 of
plane, 147 wave, 432 |
|
|
|
|
Laplace's, 369, 382, 385, 386, 439 |
|
|
|
|
Legendre polynomials, 344, 384
expansion in, 346 • Legendre’s equation, 342, 384 Leibnitz’s rule (see
Differentiation, under integral sign) |
|
|
|
102. |
Legendre’s Equation |
|
342 |
|
|
Leibnitz’s test (see Test, for
alternating series) length, of arc, 143 of ellipse, 47 of sine curve, 55
Level surface, 406 Limit, 2, 124, 454 Line, contour, 144 coordinate, 434 |
|
|
|
65. |
Line Integrals in Space |
|
215 |
|
|
Line integrals, applic&ions of, 217-224 |
|
|
|
|
84. |
Linear Differential equations of the first order |
|
283 |
|
87 |
Linear Differential Equations of the nth Order |
|
287 |
|
|
|
Linear differential equations,
283-349, 357 |
|
|
|
|
Linear differential operator,
287-299 Ivog z, 446 |
|
|
|
85. |
Linear Equations of the First Order . . |
|
284 |
|
95. |
Linear Equations with Variable Coefficients |
|
.... 315 |
|
95 |
linear Equations with Variable Coefficients . |
|
315 |
|
107. |
Linear Partial Differential Equations with Constant
Coefficients |
|
357 |
|
107. |
Linear Partial Differential Equations with Constant
coefficients |
|
|
|
|
linear, 357 |
|
|
|
|
logarithmic paper, 526 |
|
|
|
|
M |
|
|
|
|
M test, 27 |
|
|
|
|
Maclaurin formula, 36
Maclaurin’s scries, 37, 249 Magnitude of a vector, 393 Map, geographic, 479
of a curve, 466 Mapping functions, 467 Matrix, 114-122 augmented, 118
determinants of, 115 rank of, 115 |
|
|
|
34. |
Matrices and Linear Dependence |
|
114 |
|
48. |
Maxima and Minima of Functions of One Variable |
|
158 |
|
49. |
Maxima and Minima of Functions of Several variables |
|
160 |
|
|
Maxima and minima, constrained, 163 |
|
|
|
|
Mean error, 516, 522 Mean-value
theorems, 210n. Measure numbers, 397 Mechanical quadrature, 554 Membrane,
vibration of, 377 Mercator’s projection, 479 Metric coefficients, 437 |
|
|
|
143. |
Method of Conjugate Functions . . |
|
467 |
|
162. |
Method of Least Squares |
|
536 |
|
163. |
Method of Moments |
|
544 |
|
|
Minima (see Maxima and minima) Minimax, 162 |
|
|
|
33. |
Minors . |
|
110 |
|
|
Modulus, of complex number, 441, 442 |
|
|
|
|
Motion, dead-beat, 304 fluid,
220 1aws of, 231, 234 of a membrane, 377 oscijlatory, 304 pendulum, 48, 234
simple harmonic, 233, 301, 314, 380 |
|
|
|
|
MULTIPLE INTEGRALS |
|
|
|
119. |
Multiplication of Vectors |
|
399 |
|
|
MULTIPLK INTEGRALS |
|
|
|
64. |
Multiply Connected Regions |
|
212 |
|
149. |
Mutually Exclusive Events |
|
497 |
|
|
Mutually exclusive events, 497 N |
|
|
|
|
Nabla, or del, V, 194, 195, 407, 414, 422 |
|
|
|
29. |
Newton’s Method . . |
|
97 |
|
69. |
Newtonian Laws |
|
231 |
|
|
Newtonian potential, 196
Newton’s law, of attraction, 218 of cooling, 254 of dynamics, first law, 231
second law, 231, 272, 363 third law, 231, 234 of gravitation, 232 Newton’s
method of solution, 97 |
|
|
|
|
Normal distribution curve, 516
Normal equations, 537, 540 Normal form, 146 |
|
|
|
|
Normal law (see Gaussian law of error) |
|
|
|
|
Normal line, 144, 146-149 Normal
orthogonal functions, 81 Numbers, complex, 440 measure, 397 |
|
|
|
|
Normal, to a curve, 144 to a
plane, 146, 147 to a surface, 147, 188, 407 Normal approximation, 515 Normal
derivative, 144, 146, 152 (See also Gradient) |
|
|
|
|
Not Occur Explicitly |
|
267 |
|
167. |
Numerical Integration |
|
554 |
|
|
Numerical integration, 554-560
Numerical solution of differential equations, 346 |
|
|
|
103. |
Numerical Solution of Differential Equations |
|
346 |
|
|
O |
|
|
|
|
Odd function, 68 Operator, 528 |
|
|
|
|
of determinants, 110 of series,
21 of vectors, 399 Multiplicity of root, 93, 294 Multiplier, Lagrangian, 165
Multiply connected region, 205, 212, 455 |
|
|
|
|
of differential equations, 226, 228, 325 |
|
|
|
|
of elastic membrane, 377 of
electric circuits, 386 of heat conduction, 367, 425 of vibrating string, 361
Partial differentials, 128-143 Partial differentiation, 123-171 Partial
fractions, method of, 297 Partial sum, 4 |
|
|
|
|
of elliptic function, fc, 51
Moment, bending, 241 Moment of inertia, 177, 180, 182, 183, 187, 190, 191,
196, 241 Moments, method of, 544 Most probable value, 505 approximation for
probability of, 511 |
|
|
|
|
of functions, 23, 28, 124, 448 Contour line, 144 |
|
|
|
|
of hyperbolic functions, 255 of
series, 29, 33 partial, 125-143, 153 total, 130-143 Descartes’s rule of
signs, 94 Determinants, 102-114 cofactors of, 111 expansion of, 106rc., Ill
functional or Jacobian, 183 Laplace development of, 111 minors of, 110 of matrix,
115 product of, 110 properties of, 107-112 solution of equations by, 102-114
Wronskian, 317 Deviation, standard, 523 Diagonal term of determinant, 107
Diagram, pv, 223 Differences, 527 |
|
|
|
|
of integration, 173 simply
connected, 205 Regula falsi, 101 Regular functions, 451 Remainder in Taylor’s
series, 36-37 Remainder theorem, 92 Repeated trials, 501 Representation,
applications of conformal, 479-491 Residuals, 534, 537 Resonance, 310 Riemann
surface, 473 Right-handed system of axes, 397 Rod, flow of heat in, 373
vibitltions of, 366, 367 Roots, of equations, 83-102 isolation of, 92
theorems on, 92-94 of unity, w, o>2, 87 Rot (see Curl) |
|
|
|
|
of series, 29, 33, 34, 80
partial, 123-171 term by term, 33, 34, 80 under integral sign, 167 Diffusion,
369, 427 Diffusivity, 368w. |
|
|
|
|
Order of differential equation,
225 Ordinary differential equations, 225-* ' 349 |
|
|
|
|
ORDINARY DIFFERENTIAL EQUATIONS |
|
|
|
|
ORDINARY DIFFERENTIAL EQUATIONS |
|
|
|
24. |
Orthogonal Functions |
|
81 |
|
82. |
Orthogonal Trajectories |
|
277 |
|
90. |
Oscillation of a Spring and Discharge of a Condenser |
|
299 |
|
|
P |
|
|
|
|
p series, 10 Parabola, 244
Parabolic coordinates, 439 Paraboloid, hyperbolic, 162 Parachute, 253, 255 |
|
|
|
Section |
Page |
|
|
|
|
Pao* |
|
|
|
|
Parallelogram law of addition,
394 Parameters, 277, 280 integrals containing, 167 variation of, 318 |
|
|
|
393 |
parallelogram law of, |
|
|
|
|
|
Parametric equations, 143, 149, 150, 199, 215, 247 |
|
|
|
|
parametric, 143, 149, 150, 199, 215 representing special types
of data, 528 |
|
|
|
37 |
Partial Derivatives |
|
125 |
|
37 |
Partial Derivatives |
|
. 125 |
|
|
Partial derivatives, 125-143, 153 Partial differential
equation, 350-391 |
|
|
|
|
PARTIAL DIFFERENTIAL EQUATIONS |
|
|
|
|
PARTIAL DIFFERENTIAL EQUATIONS |
|
|
|
|
PARTIAL DIFFERENTIATION |
|
|
|
|
PARTIAL DIFFERENTIATION |
|
|
|
|
Particular integral, 290, 292, 297, 318, 359 |
|
|
|
|
Particular solution, 230 Path, integrals independent of, 208,
216, 452, 455 |
|
|
|
|
Pendulum, simple, 44, 234-238,
306 Periodic function, 64 Picard’s method, 347 Plane, equation of, 147
inclined, 280, 282, 306 normal form for, 146 tangent, 146-149 Point, of
inflection, 159 singular, 451 Poisson formula, 512 Polar coordinates,
183,184, 276, 279, 386, 438 |
|
|
|
|
polar, 183, 184, 276, 279, 386,
438 spherical, 152, 185, 382, 386, 434, 439 |
|
|
|
|
Polygon, rectilinear, 478, 485
Polynomials, Legendre, 344, 384 Porous solids, drying of, 369 Potential,
electrostatic, 487 gravitational, 219, 408 lines of equal, 277 Newtonian, 196 |
|
|
|
|
Potential function, 219, 411
Power series, 30-62 differentiation of, 33, 34 evaluation of integrals by,
43-46 expansion in, 35-^16 functions defined by, 33 integration of, 33, 34
interval of convergence of, 31, 33 operations on, 33-35 theorems on, 31-35 uniform
convergence of, 33 uniqueness of expansion in, 38 whose terms are infinite
series, 40 Power series solutions of differential equations, 325-346
Precision constant, 520, 521 Pressure on dam, 484 Primitive, 458 |
|
|
|
9. |
Power Series |
|
30 |
|
|
Preface |
|
v |
|
|
Preface |
|
|
|
17 |
Preliminary Remarks |
|
63 |
|
67. |
Preliminary Remarks |
|
225 |
|
104. |
Preliminary Remarks . |
|
350 |
|
|
Principal part of increment, 128
Probability, 492-524 Probability curve, 521 Probable error, 521 Probable
value, most, 505 probability of, 511 Product, of determinants, 110 scalar,
399 vector, 400 |
|
|
|
154. |
Probability of the Most Probable Number . |
|
511 |
|
154. |
Probability of the Most Probable Number . |
|
511 |
|
144. |
Problems Solvable by Conjugate Functions |
|
470 |
|
|
Projection, Mercator’s, 479 stereographic, 479 Pulley,
slipping of belt on, 239 pv diagram, 223 |
|
|
|
32. |
Properties of Determinants . . . |
|
107 |
|
135. |
Properties of Functions of a Complex Variable |
|
448 |
|
63. |
Properties of Line Integrals |
|
206 |
|
10. |
Properties of Power Series |
|
33 |
|
8. |
Properties of Uniformly Convergent Senes |
|
28 |
|
|
Q |
|
|
|
|
Quadrature, mechanical, 554 Quotient, of complex numbers, 444
of power series, 40 |
|
|
|
|
R |
|
|
|
|
Radius of convergence, 31, 33
Radius vector, 195 Rank of matrix, 115 Ratio test, 11, 20, 31 Reaction,
chemical, 258 Rearrangement of series, 17 Rectilinear polygon, 478, 485
Recursion formula, 273, 328, 331, 334 |
|
|
|
|
radius of, 31, 33 uniform,
23-30, 33 Cooling, law of, 254 Coordinate lines, 434 Coordinate surfaces, 434
Coordinates, curvilinear, 433-439 cylindrical, 152, 185, 190, 191, 378, 386,
434, 438 |
|
|
|
14 |
Rectification of Ellipse. Elliptic Integrals |
|
.47 |
|
|
14 |
Rectification of Ellipse. Elliptic. Integrals |
|
47 |
|
|
Region, multiply connected, 205, 212, 455 |
|
|
|
120. |
Relations between Scalar and Vector Products |
|
402 |
|
68. |
Remarks on Solutions |
|
227 |
|
151. |
Repeated and Independent Trials |
|
501 |
|
151. |
Repeated and Independent Trials |
|
501 |
|
93. |
Resonance |
|
310 |
|
|
Rotational field, 418 Rule, Cramer’s, 113 Simpson’s, 556
trapezoidal, J>56 |
|
|
|
|
S |
|
|
|
|
Sbction |
|
|
|
|
Scalar field, 406, 408 Scalar point function, 406, 418 Scalar
product, 399 application of, 404 Scalars, 392 |
|
|
|
|
116. |
Scalars and Vectors |
|
392 |
|
|
Schwartz transformation, 478, 485, 491 |
|
|
|
|
Section |
|
|
|
|
section |
|
|
|
|
Section |
|
|
|
|
Section |
|
|
|
|
Seepage flow, 483 Separation of variables, 257 Sequences, 2 |
|
|
|
2. |
Series of Constants |
|
6 |
|
5. |
Series of Positive and Negative Terms |
|
16 |
|
3. |
Series of Positive Terms |
|
9 |
|
|
Series, asymptotic, 524 binomial, 40 |
|
|
|
|
Series, of constants, 6-22 of functions, 23-62 power, 30-62 |
|
|
|
70. |
Simple Harmonic Motion |
|
233 |
|
71 |
Simple Pendulum |
. . |
234 |
|
|
Simple pendulum, 44, 234-238,
306 Simply connected region, 205 Simpson’s rule, 556 Simultaneous
differential equations, 312-315 |
|
|
|
94. |
Simultaneous Differential equations |
|
312 |
|
94. |
Simultaneous Differential Equations |
|
. . 312 |
|
|
Simultaneous equations, 102-122, 139-141 sin xt 41, 250 sin-1
x, 46 |
|
|
|
|
simultaneous, 102-122, 139-141 solution of, 83-122 systems of,
102-122 |
|
|
|
20 |
Sine and Cosine Series |
|
73 |
|
|
Sine, hyperbolic, 247 length of
curve, 55 power series for, 40, 41 Sme series, 73 Singular point, 451
Singular solution, 279 Singularities of function, 222 smh x, 247 |
|
|
|
83 |
Singular Solutions |
... |
279 |
|
|
Sink {see Source and sink) Six-ordinate scheme, 548 Slipping
of belt on pulley, 239 Small numbers, law of, 512 |
|
|
|
|
sn u, 51 |
|
|
|
|
Solenoidal field, 423 Solid angle, 195 Solids, drying of
porous, 369 Solution, of cubic, 86-91 |
|
|
|
98. |
Solution in Series |
|
325 |
|
|
solution of differential equations by, 228, 325-346 |
|
|
|
|
SOLUTION OF EQUATIONS |
|
|
|
|
SOLUTION OF EQUATIONS |
|
|
|
|
solution of, 226 |
|
|
|
27. |
Some Algebraic Theorems |
|
92 |
|
88 |
Some General Theorems |
|
291 |
|
88 |
Some General Theorems |
. . |
.291 |
|
44. |
Space Curves |
|
149 |
|
56. |
Spherical and Cylindrical coordinates |
|
185 |
|
111. |
Steady Heat Flow . . |
|
369 |
|
127. |
Stokes’s Theorem |
|
421 |
|
57. |
Surface Integrals |
|
188 |
|
57. |
Surface Integrals |
|
.188 |
|
59. |
Symmetrical Form of Green’s Theorem |
|
194 |
|
43. |
Tangent Plane and Normal Line to a Surface |
|
146 |
|
|
Taylor’s and Maclaurin’s, 37, 155, 228, 249, 464, 539 tests
for convergence of, 9, 11, 12, 15, 20, 27, 31, 33 |
|
|
|
141. |
Taylor’s Expansion. . |
|
464 |
|
47. |
Taylor’s Scries for Functions of Two Variables |
|
155 |
|
|
tests for, 9, 11, 12, 15, 20, 27, 31, 33 |
|
|
|
139. |
The Fundamental Theorem of Integral Calculus |
|
457 |
|
89 |
The Meaning of the Operator |
|
|
|
|
theorems on, 17, 21, 27, 28, 29, 31, 33, 34, 36, 38 |
|
|
|
156. |
Tho Error Function ... |
|
516 |
|
39 |
Total Derivatives |
|
. 130 |
|
38 |
Total Differential |
|
127 |
|
38 |
Total Differential |
|
i27 |
|
108. |
Transverse Vibration of Elastic String |
|
361 |
|
108. |
Transverse Vibration of Elastic String . |
|
. |
|
54. |
Triple Integrals |
|
179 |
|
128. |
Two Important Theorems |
|
422 |
|
|
under gravity, 232 Multiple
integrals, 172-196 definition and evaluation of, 173, 179 |
|
|
|
|
uniform convergence of, 23-30
Shearing stresses, 485 Simple dosed curve, 200 Simple harmonic motion, 233,
301, 314, 380 equation of, 234 period of, 234 |
|
|
|
112. |
Variable Heat Flow ... |
|
373 |
|
112. |
Variable Heat Flow ... |
|
. . 373 |
|
96. |
Variation of Parameters |
|
318 |
|
123. |
Vector Fields |
|
409 |
|
|
velocity, 221, 222, 277, 430, 432, 453, 467, 480 |
|
|
|
113. |
Vibration of a Membrane |
|
377 |
|
|
vii |
|
|
|
91. |
Viscous Damping |
|
302 |
|
|
with constant coefficients, 287
367 with variable coefficients, 284, 315-349 |
|
|
|
|
with constant coefficients, 287-315, 357 |
|
|
|
|
with variable coefficients, 284, 315-349 |
|
|
|
|
xi |
|
|
|
|
|
|
|
|
|
|
|
322 |
|
|
|
|
357 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|