15              
  16              
  17              
  18              
    295
75  equations with Separable Variables   . 257
77  Exact Differential Equations   262
74  First-order Differential Equations   256
(See also Differential equations) Ordinary discontinuity, 64 Origin of a vector, 393 Orthogonal curves, 277, 468 Orthogonal functions, 81, 339, 345 Orthogonal systems, 434 ^Orthogonal trajectories, 277-279 Orthogonal vectors, 398 Oscillation of a spring, 299 Oscillatory motion, 304 Overdamped, 303  
157. * Precision Constant. Probable Error   521
. 478, 480-484  
  06a              
  06b              
  07a              
  07b              
  08a              
  08b              
  09a              
  09b              
105 105. Elimination of Arbitrary Functions. . .... 
  10a              
  10b              
  11a              
  11b              
129 129 Physical Interpretation of Divergence and Curl   423
  12a              
  12b              
  13a              
  13b              
  14a              
  14b              
96 96. Variation of Parameters . . 318
97 97. The Euler Equation   322
A  
168. A More General Formula   558
86. A Non-linear Equation Reducible to Linear Form (Bernoulli’s  
86. A Non-linear Equation Reducible to Linear Form (Bernoulli’s  
Absolute convergence of series, lb, 17, 20, 21  
Absolute value of complex number, 441  
117. Addition and Subtraction of Vectors   393
441 Addition, of series, 21 of vectors,  
Addition, of series, 21 of vectors, 393 parallelogram law of, 394 Adiabiftic process, 224 Aerodynamics, 133, 431 Algebra, fundamental theorem of, 92 Algebraic theorems, 92-94 Alternating series, 15 am i/, 51  
394 Adiabiftic process, 224 Aerodynamics, 133, 431 Algebra, fundamental theorem of, 92 Algebraic theorems, 92-94 Alternating series, 15 am i/, 51  
6 Algebra of Series . 21
26. Algebraic Solution of Cubic    86
4. Alternating Series   15
Amplitude of complex number, 441 Amplitude function, 51 Analysis, harmonic, 545 Analytic functions, 451-491 Angle, as a line integral, 195 direction, 146, 398 of lap, 240 of twist, 485 solid, 195  
Angular velocity, 61, 191, 236, 404, 424  
Answers  . . 561
12. Application of Taylor’s Formula   41
Applications of Conformal Representation. . . 479
121. Applications of Scalar and Vector Products   404
Applications, of conformal representation, 479-491 of line integrals, 217-224 of scalar arid vector products, 404-406  
Approximate formula, for n!, 509 for probability of most probable number, 511  
16 Approximate Formulas in Applied Mathematics   55
155. Approximations to Binomial Law   512
Approximations to binomial law, 512 Arc length, 143 of ellipse, 47  
approximations to, 512 Binomial series, 40 Biot and Savart, law of, 52 Boundary conditions, 242, 351, 363, 370  
Arc length, of sinusoid, 55 Area, 172  
61. Area of a Closed Curve   199
Argument of complex number, 441 Associative law, for series, 18 for vectors, 394  
around a closed curve, 202, 206, 216, 421  
as a double integral, 178 as a line integral, 190-202 element of, 183, 184, 190, 437 positive and negative, 200 surface, 188-196  
Asymptotic formula for a1, 509 Asymptotic senes, 524 Atmosphere, thickness of, 61 Attraction, law of, 218, 232 motion under, 58, 218 of cone, 196 of cylinder, 196 of sphere, 196, 232 Augmented matrix, 118 Auxiliary equation, 292 Averages, method of, 534 Axes, right- or left-handed, 397  
B  
Base vectors, 396 Beam, 240-242, 307 Belt on pulley, slipping of, 239 Bending moment, 241 Bernoulli-Euler law, 241, 307 Bernoulli’s equation, 286 Bessel functions, 273, 336, 381 expansion in, 339 Bessel's equation, 332, 380 Beta function, 27*6 Binomial law, 502  
100. Bessel’s Equation   332
Buckling, 299  
c, 42 c'xy 250  
Cable, flexible, 244 flow of electricity in, 386 supporting horizontal roadway, 242  
Cartography, 479 Catenary, 247, 252.  
Cauchy- Riemann equations, 221, 450, 455  
Cauchy’s equation, 322n.  
140. Cauchy’s Integral Formula . .   461
Cauchy’s integral formula, 401 Cauchy’s integral test, 12 Cauchy’s integral theorem, 455 Center of gravity, 177, 182, 183, 187, 190, 191, 196, 522  
137. Cauchy’s Integral Theorem   455
137. Cauchy’s Integral Theorem   455
Change of variables, in derivatives, 154  
Chapter 1  
Chapter II FOURIER SERIES  
Chapter II FOURIER SERIES  
Chapter III  
Chapter III  
Chapter IV  
Chapter IV  
Chapter IX VECTOR ANALYSIS  
Chapter IX VECTOR ANALYSIS  
Chapter V  
Chapter V    
Chapter VI LINE INTEGRAL  
Chapter VI LINE INTEGRAL  
Chapter VII  
Chapter VII  
Chapter VIII  
Chapter VIII  
Chapter X  
Chapter X  
Chapter XI PROBABILITY  
Chapter XI PROBABILITY  
Chapter XI PROBABILITY  
Chapter XII  
Chapter XII  
Chapter XII  
Coefficients, Fourier, 65 metric, 437 Cofactor, 111, 112 Combinatory analysis, fundamental principle of, 493  
Commutative law, 394, 399, 400 Comparison test for series, 9 Complementary function, 290, 292 Complete elliptic integrals, 48 Complex number, 440 absolute value of, 441 argument of, 441 conjugate of, 444, 488 vector representation of, 440 Complex roots of unity, 87    
22. Complex Form of Fourier Senes   78
133. Complex Numbers .   440
COMPLEX VARIABLE  
COMPLEX VARIABLE  
Complex variable, 440-491 functions of, 444-491 analytic, 451-491 derivative of, 449 integration of, 453 line integral of, 454 Taylor’s expansion for, 464 Components of force, 217 Composite function, 134, 137 Condenser, 283, 299, 305, 308, 387 Conditionally convergent series, 16, 17, 21  
conditional, 16, 17, 21 interval of, 31, 33 of series, 4, 7  
Conditions, Cauchy-Riemann, 221, 450, 455 Dirichlet, 65  
142. Conformal Mapping ....   465
Conjugate functions, 468, 470 Conservation of matter, law of, 429 Conservative field of force, 219, 411 Consistent systems of equations, 117-122  
conservative, 411 electrostatic, 475, 477, 479 irrotational, 418 Finite discontinuity, 64 Fitting, curve, 525-560 Flexure, 298  
35 Consistent and Inconsistent Systems of Equations   117
consistent, 117-122 dependent, 105 differential, 225-391 Euler’s, 430  
161. Constants Determined by Method of averages   534
50. Constrained Maxima and Minima   163
7. Continuity of Functions Uniform Convergence   23
Continuity, equations of, 221, 429, 481  
Convergence, absolute, 16, 17, 20, 21, 33  
Coordinates, ellipsoidal, 433 parabolic, 439    
cos x, 46, 250 cosh, 247  
Cosine, hyperbolic, 247 power series for, 38, 40 Cosine series, 73  
Cosines, direction, 146, 147, 151, 188, 194, 398 coth, 249 Cramer’s rule, 113 Cross product, 400 Cubic equation, algebraic solution of,#86  
126. Curl of a Vector   418
132. Curvilinear Coordinates   433
Cylindrical coordinates, 152, 185, 190, 191, 378, 386, 434, 438  
D  
Dam, gravity, 483 Damping, viscous, 302*  
Dead-beat motion, 304 Decomposition of vectors, 396 Definite integrals, 172 change of variable m, 183-188 evaluation of, 172 mean-value theorem for, 21071. Deflection, 299  
118. Decomposition of Vectors. Base Vectors   396
52. Definition and Evaluation of the Double Integral   173
60. Definition of Line Integral   197
definition of, 197, 454 evaluation of, 202-206, 458 for angle, 195 for area, 201 for work, 217 in space, 215, 410, 421 properties of, 206-217 transformation of, 202, 421 Linear dependence or independence, 116, 317  
Degree of differential equation, 225 Del, V (see Nabla)  
Delta amplitude, dn, 51 De Moivre’s theorem, 90, 442  
Dependence, functional, 2 linear, 116  
Dependent events, 495 Derivation of differential equations, 231-247 Derivative, 125 directional, 143, 151, 219 normal, 144, 146, 152 of functions of a complex variable, 449, 452, 463    
derivation of, 351  
31. Determinants of the nth Order.   100
31. Determinants of the nth Order.   106
30. Determinants of the Second and Third Order   102
159. Differences   527
80. Differential Equations of the Second Order   269
Differential equations, 225-391 Bernoulli’s, 286 Bessel’s, 332, 380 Cauchy-Ricmann, 221, 450, 455 Cauchy’s, 322n. definition of, 225 degree of, 225 derivation of, 231-247 Euler’s, 322, 430 exact, 262 first order, 256, 267 Fourier, 425  
Differential equations, general solution of, 230, 290, 292, 350, 358 homogeneous, 259, 2G1 homogeneous linear, 290 integral curve of, 22(5, 228 integrating factor of, 205 Laplace’s, 309, 382, 385, 386, 439, 451, 470, 481 Legendre’s, 342, 384 linear, 226, 283-349, 357 numerical solution of, 346 of electric circuits, 301, 305, 386 of heat conduction, 367 of membrane, 377 of vibrating spring, 308 of vibrating string, 361 order of, 225 ordinary, 225-349 partial, 225, 350-391 particular integral of, 290, 292, 297, 318, 359 particular solution of, 230 second order, 269, 295 separation of variables m, 257 simultaneous, 312-315 singular solution of, 279 solution m series, 228, 325, 349, 364  
Differential expression, 225 Differential operators, 287-299, 357, 406  
122. Differential Operators   406
differential, 287-299, 357, 406 vector (see Curl; Divergence;  
Differential, exact, 211, 212, 216, 222, 224, 262, 411, 418, 420 of area, 184, 190 of volume, 185, 187, 190 partial, 128-143 total, 127-143  
23. Differentiation and Integration of Fourier Scries    80
41. Differentiation of Implicit Functions .   137
51. Differentiation under the Integral Sign   167
Differentiation, of implicit functions, 132-142  
18. Dinchlct Conditions. Derivation of Fourier Coefficients .... 65  
18 Dinchlet Conditions. Derivation fourier coeficients   65
Direction angles, 146, 398 Direction components, 146 Direction cosines, 146, 147, 151, 188, 194, 398    
direction cosines of, 146, 147, 151 normal, 144, 146-149 of equal potential, 277 of flow, 475 stream, 277, 432, 467 tangent, 143, 147, 151 vector equation of, 395 Line integrals, 197-224, 410, 421, 454  
Direction ratios, 150, 151 Directional derivative, 143, 151, 219 (See also Gradient)  
42. Directional Derivatives   143
45. Directional Derivatives in Space   151
Dirichlet conditions, 65 Discharge of condenser, 299 Discontinuity, finite, 64 Discriminant of cubic, 89 Distance, element of, 435 Distribution of charge, 487 Distribution charts, 506 Distribution turve, 504, 516 Distributive law, 399, 400 Divergence, of senes, 5, 8, 20 / of a vector, 411, 423, 438 Divergence theorem, 191, 415, 425, 428 dn uf 51  
15 Discussion of Elliptic Integrals . 48
15 Discussion of Elliptic Integrals . . . 48
152. Distribution Curve   504
152. Distribution Curve   504
124. Divergence of a Vector   411
125. Divergence Theorem   415
Dot product, 399  
Double integrals, 173, 192, 202, 275 Drying of porous solids, 369 Dynamics, laws of, 231  
E  
Effects, superposition of, 129, 223 E{k, <p), 48-51, 54 Elastic curve, 240, 307 Elasticity, 241, 422, 484-486 Electrodynamics, 422, 423n. Electron, 315  
Electrostatic field, 475, 477, 479 Electrostatic force, 487 Electrostatic potential, 487 Electrostatics, 486-491 Element, of arc, 467 of area, 184, 190, 437 of distance, 435 of volume, 185, 187, 190, 437 Elementary functions, 315 expansion of, 35-46, 65-82, 465 Ellipse, area of, 177, 202 center of gravity of, 177 length of arc of, 47 Ellipsoidal coordinates, 433 Elliptic functions, 51    
134. Elementary Functions of a Complex Variable .   444
105. Elimination of Arbitrary Functions.   .
Elliptic integrals, 47-55 complete, 48  
EMPIRICAL FORMULAS AND CURVE FITTING  
EMPIRICAL FORMULAS AND CURVE FITTING  
EMPIRICAL FORMULAS AND CURVE FITTING  
130. Equation of Heat Flow   425
Equation) . 286
Equation) . . 286
131. Equations of Hydrodynamics   428
79. Equations of the First Order in Which One of the Variables Does  
79 Equations of the First Order m Which One of the Variables Does  
Equations with Separable Variables   257
Equations, Cauchy-Uiemann, 221, 450, 455  
Error function, 516  
Error, Gaussian law of, 520, 536 mean, 516 mean absolute, 522 mean square, 522 of observation, 516 probable, 521 small, 56  
Euler equation, 322 Euler formulas, 78, 251 Euler’s equations, 430 Euler’s theorem, 136 Evaluation of integrals, by differentiation, 169 m series, 43-46 Even function, 68 Events, dependent, 495 independent, 495 mutually exclusive, 497 Exact differential, 211, 212, 216, 222, 224, 262, 411, 418, 420 Exact differential equation, 262 Expansion, in Bessel functions, 339 in Fourier series, 65-82 m Legendre polynomials, 346 in Maclaunil’s series, 37 in power series, 37-46 in Taylor’s scries, 37 m trigonometric series, 65 uniqueness of, 38 Expectation, 500  
40. Euler's Formula   130
13 Evaluation of Definite Integrals by Means of Power Series ...   43
evaluation of integrals by, 43-46 Fourier, 63-82 infinite, 1-62  
145 Examples of Conformal Maps .   471
99. Existence of Power Series Solutions   329
101. Expansion in Series of Bessel Functions   339
19 Expansion of Functions in Fourier series   67
11. Expansion of Functions in Power Series   35
150. Expectation. .   500
Expected number of successes, 508 Exponential form for trigonometric functions, 78, 251, 446, 447 Exponential function, expansion for, 42, 446  
138. Extension of Cauchy’s Theorem   455
138. Extension of Cauchy’s Theorem   455
21. Extension of Interval of Expansion   76
Extremal values, 164 Extremum, 164  
F  
F(k, <?), 48-55 Factor, integrating, 265 Factor theorem, 92 Factonal, n!, approximation for, 509 (See also Gamma functions) Falling body, 58, 232 Field, 406  
first kind, F(k, *>), 48-55, 238 second kind, E(k, <*>), 48-54 third kind, II(n, k} <p), 50 Empirical formulas, 525-500 Entropy, 224 Envelope, 279 Equation, auxiliary, 292 Bernoulli’s, 286 Bessel’s, 332, 380 characteristic, 292 cubic, 80 Euler, 322 Fourier, 425 indicia!, 334 integral, 347  
115. Flow of Electricity in a Cable . .   386
Flow, of a liquid, 220, 424, 428, 477,  
for exact differential, 212, 216 Conductivity, 367, 426 Conductor, 486, 489 Conformal mapping, 465, 471 Conformal representation, applications of, 479-491 Conformal transformation, 467 Conjugate of a complex number, 444, 488  
for functions of one variable, 158 for functions of several variables, 160  
92. Forced Vibrations .   308
109. Fourier Series Solution .   364
Fourier, 425  
36 Functions of Several Variables   123
1. Fundamental Concepts   1
147. Fundamental Notions   492
147 Fundamental Notions   492
fundamental principle of, 6 limit of, 3  
72 Further Examples of Derivation of Differential Equations   239
81. Gamma Functions   272
general, 230, 290, 292, 350, 358 particular, 230  
53. Geometric Interpretation of the Double Integral   177
geometric interpretation of, 177 Multiplication, of complex numbers, 442  
Gradient; Nabla)  
158. Graphical Method .   525
graphical solution of, 83 Curl, 418, 422, 423, 438 Current, 386, 427 Curve, distribution, 504, 516 clastic, 240, 307 map of, 466 Curve fitting, 525-560 Curves, integral, 226, 228, 279 orthogonal, 277, 468 Curvilinear coordinates, 433-439 Cylinder functions (see Bessel functions)  
25. Graphical Solutions   83
62. Green’s Theorem for the Plane   202
58. Green’s Theorem in Space   191
164. Harmonic Analysis   545
110. Heat Conduction   367
89. 'Hie Meaning of the Operator  
46. Higher Partial Derivatives   153
hofnogeneous linear, 119-122 non-homogeneous linear, 113-119  
Homogeneous Differential equations   259
76 Homogeneous Differential Equations   . 259
28. Horner’s Method   95
73 Hyperbolic Functions   247
66. Illustrations of the Application of the Line Integrals  
66. Illustrations of the Application of the Line Integrals .   . 217
in applied mathematics, 55 Approximation, Laplace’s or normal, 515  
in integrals, 183-188 Characteristic equation, 292 Charge, distribution of, 487 Charts, distribution, 506 Chemical reaction, 258 Circular functions, 247 Circulation, of a liquid, 475, 477 of a vector, 418, 419 Closed curve, area of, 199-201 direction around, 200 integral around, 201, 203, 206, 216, 421 simple, 200 cn w, 51  
inconsistent, 105, 117-122 normal, 537, 540  
Index  . 575
Index   575
INFINITE SERIES  
78 Integrating Factors   265
integration and differentiation of, 29, 33, 34  
136. Integration of Complex Functions ....   453
106. Integration of Partial Differential Equations.   353
integration of, 353  
165. Interpolation Formulas   550
13 J.3. Evaluation of Definite Integrals by Means of Power Series ... 43  
55. Jacobians. Change of Variable   183
166. Lagrange’s Interpolation Formula   552
Lagrange’s interpolation formula, 552  
Lagrange’s method of multipliers, 163-167  
Lamellar field, 423 Laplace’s approximation, 515 Laplace’s equation, 195, 369, 382, 385, 386, 439, 451, 470, 481 Law, Bernoulli-Euler, 241 binomial, 502, 512 of attraction, 218 of conservation of matter, 429 of cooling, 254 of dynamics, 231 of error, 520, 536 of gravitation, 232 of small numbers, 512 Least squares, method of, 536 theory of, 521  
114. Laplace’s Equation   382
Laplace’s, 195, 309, 382, 385, 380, 439, 451, 470, 481 Legendre’s, 342, 384 of continuity, 221, 429, 481 of plane, 147 wave, 432  
Laplace's, 369, 382, 385, 386, 439  
Legendre polynomials, 344, 384 expansion in, 346 • Legendre’s equation, 342, 384 Leibnitz’s rule (see Differentiation, under integral sign)  
102. Legendre’s Equation   342
Leibnitz’s test (see Test, for alternating series) length, of arc, 143 of ellipse, 47 of sine curve, 55 Level surface, 406 Limit, 2, 124, 454 Line, contour, 144 coordinate, 434  
65. Line Integrals in Space   215
Line integrals, applic&ions of, 217-224    
84. Linear Differential equations of the first order   283
87 Linear Differential Equations of the nth Order   287  
Linear differential equations, 283-349, 357  
Linear differential operator, 287-299 Ivog z, 446  
85. Linear Equations of the First Order . .   284
95. Linear Equations with Variable Coefficients   .... 315
95 linear Equations with Variable Coefficients .   315
107. Linear Partial Differential Equations with Constant Coefficients   357
107. Linear Partial Differential Equations with Constant coefficients    
linear, 357  
logarithmic paper, 526  
M  
M test, 27  
Maclaurin formula, 36 Maclaurin’s scries, 37, 249 Magnitude of a vector, 393 Map, geographic, 479 of a curve, 466 Mapping functions, 467 Matrix, 114-122 augmented, 118 determinants of, 115 rank of, 115  
34. Matrices and Linear Dependence   114
48. Maxima and Minima of Functions of One Variable   158
49. Maxima and Minima of Functions of Several variables   160
Maxima and minima, constrained, 163  
Mean error, 516, 522 Mean-value theorems, 210n. Measure numbers, 397 Mechanical quadrature, 554 Membrane, vibration of, 377 Mercator’s projection, 479 Metric coefficients, 437  
143. Method of Conjugate Functions . .   467
162. Method of Least Squares   536
163. Method of Moments   544
Minima (see Maxima and minima) Minimax, 162  
33. Minors .   110
Modulus, of complex number, 441, 442  
Motion, dead-beat, 304 fluid, 220 1aws of, 231, 234 of a membrane, 377 oscijlatory, 304 pendulum, 48, 234 simple harmonic, 233, 301, 314, 380  
MULTIPLE INTEGRALS  
119. Multiplication of Vectors   399
MULTIPLK INTEGRALS  
64. Multiply Connected Regions   212
149. Mutually Exclusive Events   497
Mutually exclusive events, 497 N  
Nabla, or del, V, 194, 195, 407, 414, 422  
29. Newton’s Method . .   97
69. Newtonian Laws   231
Newtonian potential, 196 Newton’s law, of attraction, 218 of cooling, 254 of dynamics, first law, 231 second law, 231, 272, 363 third law, 231, 234 of gravitation, 232 Newton’s method of solution, 97  
Normal distribution curve, 516 Normal equations, 537, 540 Normal form, 146  
Normal law (see Gaussian law of error)  
Normal line, 144, 146-149 Normal orthogonal functions, 81 Numbers, complex, 440 measure, 397  
Normal, to a curve, 144 to a plane, 146, 147 to a surface, 147, 188, 407 Normal approximation, 515 Normal derivative, 144, 146, 152 (See also Gradient)  
Not Occur Explicitly   267
167. Numerical Integration   554
Numerical integration, 554-560 Numerical solution of differential equations, 346  
103. Numerical Solution of Differential Equations    346
O  
Odd function, 68 Operator, 528  
of determinants, 110 of series, 21 of vectors, 399 Multiplicity of root, 93, 294 Multiplier, Lagrangian, 165 Multiply connected region, 205, 212, 455  
of differential equations, 226, 228, 325  
of elastic membrane, 377 of electric circuits, 386 of heat conduction, 367, 425 of vibrating string, 361 Partial differentials, 128-143 Partial differentiation, 123-171 Partial fractions, method of, 297 Partial sum, 4  
of elliptic function, fc, 51 Moment, bending, 241 Moment of inertia, 177, 180, 182, 183, 187, 190, 191, 196, 241 Moments, method of, 544 Most probable value, 505 approximation for probability of, 511  
of functions, 23, 28, 124, 448 Contour line, 144  
of hyperbolic functions, 255 of series, 29, 33 partial, 125-143, 153 total, 130-143 Descartes’s rule of signs, 94 Determinants, 102-114 cofactors of, 111 expansion of, 106rc., Ill functional or Jacobian, 183 Laplace development of, 111 minors of, 110 of matrix, 115 product of, 110 properties of, 107-112 solution of equations by, 102-114 Wronskian, 317 Deviation, standard, 523 Diagonal term of determinant, 107 Diagram, pv, 223 Differences, 527  
of integration, 173 simply connected, 205 Regula falsi, 101 Regular functions, 451 Remainder in Taylor’s series, 36-37 Remainder theorem, 92 Repeated trials, 501 Representation, applications of conformal, 479-491 Residuals, 534, 537 Resonance, 310 Riemann surface, 473 Right-handed system of axes, 397 Rod, flow of heat in, 373 vibitltions of, 366, 367 Roots, of equations, 83-102 isolation of, 92 theorems on, 92-94 of unity, w, o>2, 87 Rot (see Curl)  
of series, 29, 33, 34, 80 partial, 123-171 term by term, 33, 34, 80 under integral sign, 167 Diffusion, 369, 427 Diffusivity, 368w.  
Order of differential equation, 225 Ordinary differential equations, 225-* ' 349  
ORDINARY DIFFERENTIAL EQUATIONS  
ORDINARY DIFFERENTIAL EQUATIONS  
24. Orthogonal Functions   81
82. Orthogonal Trajectories   277
90. Oscillation of a Spring and Discharge of a Condenser   299
P  
p series, 10 Parabola, 244 Parabolic coordinates, 439 Paraboloid, hyperbolic, 162 Parachute, 253, 255  
Section Page  
Pao*  
Parallelogram law of addition, 394 Parameters, 277, 280 integrals containing, 167 variation of, 318  
393 parallelogram law of,    
Parametric equations, 143, 149, 150, 199, 215, 247  
parametric, 143, 149, 150, 199, 215 representing special types of data, 528  
37 Partial Derivatives   125
37 Partial Derivatives   . 125
Partial derivatives, 125-143, 153 Partial differential equation, 350-391  
PARTIAL DIFFERENTIAL EQUATIONS  
PARTIAL DIFFERENTIAL EQUATIONS  
PARTIAL DIFFERENTIATION  
PARTIAL DIFFERENTIATION  
Particular integral, 290, 292, 297, 318, 359  
Particular solution, 230 Path, integrals independent of, 208, 216, 452, 455  
Pendulum, simple, 44, 234-238, 306 Periodic function, 64 Picard’s method, 347 Plane, equation of, 147 inclined, 280, 282, 306 normal form for, 146 tangent, 146-149 Point, of inflection, 159 singular, 451 Poisson formula, 512 Polar coordinates, 183,184, 276, 279, 386, 438  
polar, 183, 184, 276, 279, 386, 438 spherical, 152, 185, 382, 386, 434, 439  
Polygon, rectilinear, 478, 485 Polynomials, Legendre, 344, 384 Porous solids, drying of, 369 Potential, electrostatic, 487 gravitational, 219, 408 lines of equal, 277 Newtonian, 196  
Potential function, 219, 411 Power series, 30-62 differentiation of, 33, 34 evaluation of integrals by, 43-46 expansion in, 35-^16 functions defined by, 33 integration of, 33, 34 interval of convergence of, 31, 33 operations on, 33-35 theorems on, 31-35 uniform convergence of, 33 uniqueness of expansion in, 38 whose terms are infinite series, 40 Power series solutions of differential equations, 325-346 Precision constant, 520, 521 Pressure on dam, 484 Primitive, 458  
9. Power Series   30
Preface    v
Preface  
17 Preliminary Remarks   63
67. Preliminary Remarks   225
104. Preliminary Remarks .   350
Principal part of increment, 128 Probability, 492-524 Probability curve, 521 Probable error, 521 Probable value, most, 505 probability of, 511 Product, of determinants, 110 scalar, 399 vector, 400  
154. Probability of the Most Probable Number .   511
154. Probability of the Most Probable Number .   511
144. Problems Solvable by Conjugate Functions   470
Projection, Mercator’s, 479 stereographic, 479 Pulley, slipping of belt on, 239 pv diagram, 223  
32. Properties of Determinants . . .   107
135. Properties of Functions of a Complex Variable   448
63. Properties of Line Integrals   206
10. Properties of Power Series   33
8. Properties of Uniformly Convergent Senes   28
Q  
Quadrature, mechanical, 554 Quotient, of complex numbers, 444 of power series, 40  
R  
Radius of convergence, 31, 33 Radius vector, 195 Rank of matrix, 115 Ratio test, 11, 20, 31 Reaction, chemical, 258 Rearrangement of series, 17 Rectilinear polygon, 478, 485 Recursion formula, 273, 328, 331, 334  
radius of, 31, 33 uniform, 23-30, 33 Cooling, law of, 254 Coordinate lines, 434 Coordinate surfaces, 434 Coordinates, curvilinear, 433-439 cylindrical, 152, 185, 190, 191, 378, 386, 434, 438  
14 Rectification of Ellipse. Elliptic Integrals     .47  
14 Rectification of Ellipse. Elliptic. Integrals    47
Region, multiply connected, 205, 212, 455  
120. Relations between Scalar and Vector Products   402
68. Remarks on Solutions   227
151. Repeated and Independent Trials   501
151. Repeated and Independent Trials   501
93. Resonance   310
Rotational field, 418 Rule, Cramer’s, 113 Simpson’s, 556 trapezoidal, J>56  
S  
Sbction  
Scalar field, 406, 408 Scalar point function, 406, 418 Scalar product, 399 application of, 404 Scalars, 392    
116. Scalars and Vectors   392
Schwartz transformation, 478, 485, 491  
Section  
section  
Section  
Section  
Seepage flow, 483 Separation of variables, 257 Sequences, 2  
2. Series of Constants   6
5. Series of Positive and Negative Terms   16
3. Series of Positive Terms   9
Series, asymptotic, 524 binomial, 40  
Series, of constants, 6-22 of functions, 23-62 power, 30-62  
70. Simple Harmonic Motion   233
71 Simple Pendulum . . 234
Simple pendulum, 44, 234-238, 306 Simply connected region, 205 Simpson’s rule, 556 Simultaneous differential equations, 312-315  
94. Simultaneous Differential equations   312
94. Simultaneous Differential Equations   . . 312
Simultaneous equations, 102-122, 139-141 sin xt 41, 250 sin-1 x, 46  
simultaneous, 102-122, 139-141 solution of, 83-122 systems of, 102-122  
20 Sine and Cosine Series   73
Sine, hyperbolic, 247 length of curve, 55 power series for, 40, 41 Sme series, 73 Singular point, 451 Singular solution, 279 Singularities of function, 222 smh x, 247  
83 Singular Solutions ... 279
Sink {see Source and sink) Six-ordinate scheme, 548 Slipping of belt on pulley, 239 Small numbers, law of, 512  
sn u, 51  
Solenoidal field, 423 Solid angle, 195 Solids, drying of porous, 369 Solution, of cubic, 86-91  
98. Solution in Series   325
solution of differential equations by, 228, 325-346  
SOLUTION OF EQUATIONS  
SOLUTION OF EQUATIONS  
solution of, 226  
27. Some Algebraic Theorems   92
88 Some General Theorems   291
88 Some General Theorems . . .291
44. Space Curves   149
56. Spherical and Cylindrical coordinates   185
111. Steady Heat Flow . .   369
127. Stokes’s Theorem   421
57. Surface Integrals   188
57. Surface Integrals   .188
59. Symmetrical Form of Green’s Theorem   194
43. Tangent Plane and Normal Line to a Surface   146
Taylor’s and Maclaurin’s, 37, 155, 228, 249, 464, 539 tests for convergence of, 9, 11, 12, 15, 20, 27, 31, 33  
141. Taylor’s Expansion. .   464
47. Taylor’s Scries for Functions of Two Variables   155
tests for, 9, 11, 12, 15, 20, 27, 31, 33  
139. The Fundamental Theorem of Integral Calculus   457
89 The Meaning of the Operator  
theorems on, 17, 21, 27, 28, 29, 31, 33, 34, 36, 38  
156. Tho Error Function ...   516
39 Total Derivatives   . 130
38 Total Differential   127
38 Total Differential   i27
108. Transverse Vibration of Elastic String   361
108. Transverse Vibration of Elastic String .   .
54. Triple Integrals   179
128. Two Important Theorems   422
under gravity, 232 Multiple integrals, 172-196 definition and evaluation of, 173, 179  
uniform convergence of, 23-30 Shearing stresses, 485 Simple dosed curve, 200 Simple harmonic motion, 233, 301, 314, 380 equation of, 234 period of, 234  
112. Variable Heat Flow ...   373
112. Variable Heat Flow ...   . . 373
96. Variation of Parameters   318
123. Vector Fields   409
velocity, 221, 222, 277, 430, 432, 453, 467, 480  
113. Vibration of a Membrane   377
vii  
91. Viscous Damping   302
with constant coefficients, 287 367 with variable coefficients, 284, 315-349  
with constant coefficients, 287-315, 357  
with variable coefficients, 284, 315-349  
xi  
 
  322
  357