1. Fundamental Concepts   1
2. Series of Constants   6
3. Series of Positive Terms   9
4. Alternating Series   15
5. Series of Positive and Negative Terms   16
6 Algebra of Series . 21
7. Continuity of Functions Uniform Convergence   23
8. Properties of Uniformly Convergent Senes   28
9. Power Series   30
10. Properties of Power Series   33
11. Expansion of Functions in Power Series   35
12. Application of Taylor’s Formula   41
13 Evaluation of Definite Integrals by Means of Power Series ...   43
14 Rectification of Ellipse. Elliptic. Integrals    47
15 Discussion of Elliptic Integrals . 48
16 Approximate Formulas in Applied Mathematics   55
17 Preliminary Remarks   63
18 Dinchlet Conditions. Derivation fourier coeficients   65
19 Expansion of Functions in Fourier series   67
20 Sine and Cosine Series   73
21. Extension of Interval of Expansion   76
22. Complex Form of Fourier Senes   78
23. Differentiation and Integration of Fourier Scries    80
24. Orthogonal Functions   81
25. Graphical Solutions   83
26. Algebraic Solution of Cubic    86
27. Some Algebraic Theorems   92
28. Horner’s Method   95
29. Newton’s Method . .   97
31. Determinants of the nth Order.   100
30. Determinants of the Second and Third Order   102
31. Determinants of the nth Order.   106
32. Properties of Determinants . . .   107
33. Minors .   110
34. Matrices and Linear Dependence   114
35 Consistent and Inconsistent Systems of Equations   117
36 Functions of Several Variables   123
37 Partial Derivatives   125
38 Total Differential   127
40. Euler's Formula   130
41. Differentiation of Implicit Functions .   137
42. Directional Derivatives   143
43. Tangent Plane and Normal Line to a Surface   146
44. Space Curves   149
45. Directional Derivatives in Space   151
46. Higher Partial Derivatives   153
47. Taylor’s Scries for Functions of Two Variables   155
48. Maxima and Minima of Functions of One Variable   158
49. Maxima and Minima of Functions of Several variables   160
50. Constrained Maxima and Minima   163
51. Differentiation under the Integral Sign   167
52. Definition and Evaluation of the Double Integral   173
53. Geometric Interpretation of the Double Integral   177
54. Triple Integrals   179
55. Jacobians. Change of Variable   183
56. Spherical and Cylindrical coordinates   185
57. Surface Integrals   188
58. Green’s Theorem in Space   191
59. Symmetrical Form of Green’s Theorem   194
60. Definition of Line Integral   197
61. Area of a Closed Curve   199
62. Green’s Theorem for the Plane   202
63. Properties of Line Integrals   206
64. Multiply Connected Regions   212
65. Line Integrals in Space   215
67. Preliminary Remarks   225
68. Remarks on Solutions   227
69. Newtonian Laws   231
70. Simple Harmonic Motion   233
71 Simple Pendulum . . 234
72 Further Examples of Derivation of Differential Equations   239
73 Hyperbolic Functions   247
74  First-order Differential Equations   256
Equations with Separable Variables   257
Homogeneous Differential equations   259
77  Exact Differential Equations   262
78 Integrating Factors   265
Not Occur Explicitly   267
80. Differential Equations of the Second Order   269
81. Gamma Functions   272
82. Orthogonal Trajectories   277
83 Singular Solutions ... 279
84. Linear Differential equations of the first order   283
85. Linear Equations of the First Order . .   284
Equation) . 286
  87 Linear Differential Equations of the nth Order   287
88 Some General Theorems   291
    295
90. Oscillation of a Spring and Discharge of a Condenser   299
91. Viscous Damping   302
92. Forced Vibrations .   308
93. Resonance   310
94. Simultaneous Differential equations   312
95 linear Equations with Variable Coefficients .   315
96. Variation of Parameters   318
97 97. The Euler Equation   322
  322
98. Solution in Series   325
99. Existence of Power Series Solutions   329
100. Bessel’s Equation   332
101. Expansion in Series of Bessel Functions   339
102. Legendre’s Equation   342
103. Numerical Solution of Differential Equations    346
104. Preliminary Remarks .   350
106. Integration of Partial Differential Equations.   353
107. Linear Partial Differential Equations with Constant Coefficients   357
  357
108. Transverse Vibration of Elastic String   361
109. Fourier Series Solution .   364
110. Heat Conduction   367
111. Steady Heat Flow . .   369
112. Variable Heat Flow ...   373
113. Vibration of a Membrane   377
114. Laplace’s Equation   382
115. Flow of Electricity in a Cable . .   386
116. Scalars and Vectors   392
117. Addition and Subtraction of Vectors   393
118. Decomposition of Vectors. Base Vectors   396
119. Multiplication of Vectors   399
120. Relations between Scalar and Vector Products   402
121. Applications of Scalar and Vector Products   404
122. Differential Operators   406
123. Vector Fields   409
124. Divergence of a Vector   411
125. Divergence Theorem   415
126. Curl of a Vector   418
127. Stokes’s Theorem   421
128. Two Important Theorems   422
129 129 Physical Interpretation of Divergence and Curl   423
130. Equation of Heat Flow   425
131. Equations of Hydrodynamics   428
132. Curvilinear Coordinates   433
133. Complex Numbers .   440
134. Elementary Functions of a Complex Variable .   444
135. Properties of Functions of a Complex Variable   448
136. Integration of Complex Functions ....   453
137. Cauchy’s Integral Theorem   455
138. Extension of Cauchy’s Theorem   455
137. Cauchy’s Integral Theorem   455
  138. Extension of Cauchy’s Theorem   455
139. The Fundamental Theorem of Integral Calculus   457
140. Cauchy’s Integral Formula . .   461
141. Taylor’s Expansion. .   464
142. Conformal Mapping ....   465
143. Method of Conjugate Functions . .   467
144. Problems Solvable by Conjugate Functions   470
145 Examples of Conformal Maps .   471
Applications of Conformal Representation. . . 479
147. Fundamental Notions   492
147 Fundamental Notions   492
149. Mutually Exclusive Events   497
150. Expectation. .   500
151. Repeated and Independent Trials   501
151. Repeated and Independent Trials   501
152. Distribution Curve   504
152. Distribution Curve   504
154. Probability of the Most Probable Number .   511
154. Probability of the Most Probable Number .   511
155. Approximations to Binomial Law   512
156. Tho Error Function ...   516
157. * Precision Constant. Probable Error   521
158. Graphical Method .   525
159. Differences   527
161. Constants Determined by Method of averages   534
162. Method of Least Squares   536
163. Method of Moments   544
164. Harmonic Analysis   545
165. Interpolation Formulas   550
166. Lagrange’s Interpolation Formula   552
167. Numerical Integration   554
168. A More General Formula   558
Answers  . . 561
Index  . 575
Index   575
107. Linear Partial Differential Equations with Constant coefficients    
  14 Rectification of Ellipse. Elliptic Integrals     .47
Preface    v
105. Elimination of Arbitrary Functions.   .
108. Transverse Vibration of Elastic String .   .
94. Simultaneous Differential Equations   . . 312
112. Variable Heat Flow ...   . . 373
15 Discussion of Elliptic Integrals . . . 48
37 Partial Derivatives   . 125
39 Total Derivatives   . 130
66. Illustrations of the Application of the Line Integrals .   . 217
75  equations with Separable Variables   . 257
76 Homogeneous Differential Equations   . 259
Equation) . . 286
96 96. Variation of Parameters . . 318
105 105. Elimination of Arbitrary Functions. . .... 
95. Linear Equations with Variable Coefficients   .... 315
57. Surface Integrals   .188
88 Some General Theorems . . .291
38 Total Differential   i27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter II FOURIER SERIES  
 
 
 
 
 
 
 
 
 
Chapter III  
   
SOLUTION OF EQUATIONS  
 
 
 
 
 
 
 
 
 
 
 
 
Chapter IV  
 
PARTIAL DIFFERENTIATION  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter V  
 
MULTIPLE INTEGRALS  
 
 
 
 
 
 
 
 
 
Chapter VI LINE INTEGRAL  
 
 
 
 
 
 
 
66. Illustrations of the Application of the Line Integrals  
                 
 
 
Section  
   
Chapter VII  
 
ORDINARY DIFFERENTIAL EQUATIONS  
 
 
 
 
 
 
 
 
 
 
 
 
 
79 Equations of the First Order m Which One of the Variables Does  
 
 
 
   
 
 
 
 
86. A Non-linear Equation Reducible to Linear Form (Bernoulli’s  
 
 
 
 
89 The Meaning of the Operator  
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
Chapter VIII  
   
PARTIAL DIFFERENTIAL EQUATIONS  
 
 
                 
Section Page  
 
 
 
 
 
 
 
 
 
 
Chapter IX VECTOR ANALYSIS  
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
Chapter X  
 
COMPLEX VARIABLE  
 
 
 
 
 
   
 
 
 
 
 
 
 
 
                 
xi  
 
Sbction  
 
Chapter XI PROBABILITY  
 
 
 
 
 
   
 
 
 
 
 
 
Chapter XII  
 
EMPIRICAL FORMULAS AND CURVE FITTING  
 
 
 
 
 
 
 
 
 
 
 
 
 
                 
   
 
section  
 
Chapter XI PROBABILITY  
 
 
 
 
 
   
 
 
 
 
 
 
Chapter XII  
 
EMPIRICAL FORMULAS AND CURVE FITTING  
 
 
 
 
 
 
   
 
 
 
 
 
 
  06a              
A  
Absolute convergence of series, lb, 17, 20, 21  
 
Absolute value of complex number, 441  
 
441 Addition, of series, 21 of vectors,  
  393 parallelogram law of,  
394 Adiabiftic process, 224 Aerodynamics, 133, 431 Algebra, fundamental theorem of, 92 Algebraic theorems, 92-94 Alternating series, 15 am i/, 51  
Addition, of series, 21 of vectors, 393 parallelogram law of, 394 Adiabiftic process, 224 Aerodynamics, 133, 431 Algebra, fundamental theorem of, 92 Algebraic theorems, 92-94 Alternating series, 15 am i/, 51  
Amplitude of complex number, 441 Amplitude function, 51 Analysis, harmonic, 545 Analytic functions, 451-491 Angle, as a line integral, 195 direction, 146, 398 of lap, 240 of twist, 485 solid, 195  
 
Angular velocity, 61, 191, 236, 404, 424  
 
Applications, of conformal representation, 479-491 of line integrals, 217-224 of scalar arid vector products, 404-406  
 
Approximate formula, for n!, 509 for probability of most probable number, 511  
 
in applied mathematics, 55 Approximation, Laplace’s or normal, 515  
 
Approximations to binomial law, 512 Arc length, 143 of ellipse, 47  
  06b              
Arc length, of sinusoid, 55 Area, 172  
 
as a double integral, 178 as a line integral, 190-202 element of, 183, 184, 190, 437 positive and negative, 200 surface, 188-196  
 
Argument of complex number, 441 Associative law, for series, 18 for vectors, 394  
   
Asymptotic formula for a1, 509 Asymptotic senes, 524 Atmosphere, thickness of, 61 Attraction, law of, 218, 232 motion under, 58, 218 of cone, 196 of cylinder, 196 of sphere, 196, 232 Augmented matrix, 118 Auxiliary equation, 292 Averages, method of, 534 Axes, right- or left-handed, 397  
 
B  
 
Base vectors, 396 Beam, 240-242, 307 Belt on pulley, slipping of, 239 Bending moment, 241 Bernoulli-Euler law, 241, 307 Bernoulli’s equation, 286 Bessel functions, 273, 336, 381 expansion in, 339 Bessel's equation, 332, 380 Beta function, 27*6 Binomial law, 502  
 
approximations to, 512 Binomial series, 40 Biot and Savart, law of, 52 Boundary conditions, 242, 351, 363, 370  
 
Buckling, 299  
  07a              
Lagrange’s interpolation formula, 552  
 
Lagrange’s method of multipliers, 163-167  
 
Lamellar field, 423 Laplace’s approximation, 515 Laplace’s equation, 195, 369, 382, 385, 386, 439, 451, 470, 481 Law, Bernoulli-Euler, 241 binomial, 502, 512 of attraction, 218 of conservation of matter, 429 of cooling, 254 of dynamics, 231 of error, 520, 536 of gravitation, 232 of small numbers, 512 Least squares, method of, 536 theory of, 521  
 
Legendre polynomials, 344, 384 expansion in, 346 • Legendre’s equation, 342, 384 Leibnitz’s rule (see Differentiation, under integral sign)  
 
Leibnitz’s test (see Test, for alternating series) length, of arc, 143 of ellipse, 47 of sine curve, 55 Level surface, 406 Limit, 2, 124, 454 Line, contour, 144 coordinate, 434  
 
direction cosines of, 146, 147, 151 normal, 144, 146-149 of equal potential, 277 of flow, 475 stream, 277, 432, 467 tangent, 143, 147, 151 vector equation of, 395 Line integrals, 197-224, 410, 421, 454  
  07b              
  Line integrals, applic&ions of, 217-224  
 
around a closed curve, 202, 206, 216, 421  
 
definition of, 197, 454 evaluation of, 202-206, 458 for angle, 195 for area, 201 for work, 217 in space, 215, 410, 421 properties of, 206-217 transformation of, 202, 421 Linear dependence or independence, 116, 317  
 
Linear differential equations, 283-349, 357  
 
with constant coefficients, 287 367 with variable coefficients, 284, 315-349  
 
Linear differential operator, 287-299 Ivog z, 446  
 
logarithmic paper, 526  
 
M  
M test, 27  
 
Maclaurin formula, 36 Maclaurin’s scries, 37, 249 Magnitude of a vector, 393 Map, geographic, 479 of a curve, 466 Mapping functions, 467 Matrix, 114-122 augmented, 118 determinants of, 115 rank of, 115  
 
Maxima and minima, constrained, 163  
 
for functions of one variable, 158 for functions of several variables, 160  
 
Mean error, 516, 522 Mean-value theorems, 210n. Measure numbers, 397 Mechanical quadrature, 554 Membrane, vibration of, 377 Mercator’s projection, 479 Metric coefficients, 437  
  08a              
Cable, flexible, 244 flow of electricity in, 386 supporting horizontal roadway, 242  
 
Cartography, 479 Catenary, 247, 252.  
   
Cauchy- Riemann equations, 221, 450, 455  
 
Cauchy’s equation, 322n.  
 
Cauchy’s integral formula, 401 Cauchy’s integral test, 12 Cauchy’s integral theorem, 455 Center of gravity, 177, 182, 183, 187, 190, 191, 196, 522  
 
Change of variables, in derivatives, 154  
 
in integrals, 183-188 Characteristic equation, 292 Charge, distribution of, 487 Charts, distribution, 506 Chemical reaction, 258 Circular functions, 247 Circulation, of a liquid, 475, 477 of a vector, 418, 419 Closed curve, area of, 199-201 direction around, 200 integral around, 201, 203, 206, 216, 421 simple, 200 cn w, 51  
 
Coefficients, Fourier, 65 metric, 437 Cofactor, 111, 112 Combinatory analysis, fundamental principle of, 493  
 
  Commutative law, 394, 399, 400 Comparison test for series, 9 Complementary function, 290, 292 Complete elliptic integrals, 48 Complex number, 440 absolute value of, 441 argument of, 441 conjugate of, 444, 488 vector representation of, 440 Complex roots of unity, 87  
  08b              
Complex variable, 440-491 functions of, 444-491 analytic, 451-491 derivative of, 449 integration of, 453 line integral of, 454 Taylor’s expansion for, 464 Components of force, 217 Composite function, 134, 137 Condenser, 283, 299, 305, 308, 387 Conditionally convergent series, 16, 17, 21  
 
Conditions, Cauchy-Riemann, 221, 450, 455 Dirichlet, 65  
 
for exact differential, 212, 216 Conductivity, 367, 426 Conductor, 486, 489 Conformal mapping, 465, 471 Conformal representation, applications of, 479-491 Conformal transformation, 467 Conjugate of a complex number, 444, 488  
 
Conjugate functions, 468, 470 Conservation of matter, law of, 429 Conservative field of force, 219, 411 Consistent systems of equations, 117-122  
 
Continuity, equations of, 221, 429, 481  
 
of functions, 23, 28, 124, 448 Contour line, 144  
 
Convergence, absolute, 16, 17, 20, 21, 33  
 
conditional, 16, 17, 21 interval of, 31, 33 of series, 4, 7  
 
tests for, 9, 11, 12, 15, 20, 27, 31, 33  
 
radius of, 31, 33 uniform, 23-30, 33 Cooling, law of, 254 Coordinate lines, 434 Coordinate surfaces, 434 Coordinates, curvilinear, 433-439 cylindrical, 152, 185, 190, 191, 378, 386, 434, 438  
  09a              
  Coordinates, ellipsoidal, 433 parabolic, 439  
 
polar, 183, 184, 276, 279, 386, 438 spherical, 152, 185, 382, 386, 434, 439  
 
cos x, 46, 250 cosh, 247  
 
Cosine, hyperbolic, 247 power series for, 38, 40 Cosine series, 73  
 
Cosines, direction, 146, 147, 151, 188, 194, 398 coth, 249 Cramer’s rule, 113 Cross product, 400 Cubic equation, algebraic solution of,#86  
 
graphical solution of, 83 Curl, 418, 422, 423, 438 Current, 386, 427 Curve, distribution, 504, 516 clastic, 240, 307 map of, 466 Curve fitting, 525-560 Curves, integral, 226, 228, 279 orthogonal, 277, 468 Curvilinear coordinates, 433-439 Cylinder functions (see Bessel functions)  
 
Cylindrical coordinates, 152, 185, 190, 191, 378, 386, 434, 438  
 
D  
 
Dam, gravity, 483 Damping, viscous, 302*  
 
Dead-beat motion, 304 Decomposition of vectors, 396 Definite integrals, 172 change of variable m, 183-188 evaluation of, 172 mean-value theorem for, 21071. Deflection, 299  
 
Degree of differential equation, 225 Del, V (see Nabla)  
 
Delta amplitude, dn, 51 De Moivre’s theorem, 90, 442  
  09b              
Dependence, functional, 2 linear, 116  
 
  Dependent events, 495 Derivation of differential equations, 231-247 Derivative, 125 directional, 143, 151, 219 normal, 144, 146, 152 of functions of a complex variable, 449, 452, 463  
 
of hyperbolic functions, 255 of series, 29, 33 partial, 125-143, 153 total, 130-143 Descartes’s rule of signs, 94 Determinants, 102-114 cofactors of, 111 expansion of, 106rc., Ill functional or Jacobian, 183 Laplace development of, 111 minors of, 110 of matrix, 115 product of, 110 properties of, 107-112 solution of equations by, 102-114 Wronskian, 317 Deviation, standard, 523 Diagonal term of determinant, 107 Diagram, pv, 223 Differences, 527  
 
Differential, exact, 211, 212, 216, 222, 224, 262, 411, 418, 420 of area, 184, 190 of volume, 185, 187, 190 partial, 128-143 total, 127-143  
 
Differential equations, 225-391 Bernoulli’s, 286 Bessel’s, 332, 380 Cauchy-Ricmann, 221, 450, 455 Cauchy’s, 322n. definition of, 225 degree of, 225 derivation of, 231-247 Euler’s, 322, 430 exact, 262 first order, 256, 267 Fourier, 425  
  10a              
Differential equations, general solution of, 230, 290, 292, 350, 358 homogeneous, 259, 2G1 homogeneous linear, 290 integral curve of, 22(5, 228 integrating factor of, 205 Laplace’s, 309, 382, 385, 386, 439, 451, 470, 481 Legendre’s, 342, 384 linear, 226, 283-349, 357 numerical solution of, 346 of electric circuits, 301, 305, 386 of heat conduction, 367 of membrane, 377 of vibrating spring, 308 of vibrating string, 361 order of, 225 ordinary, 225-349 partial, 225, 350-391 particular integral of, 290, 292, 297, 318, 359 particular solution of, 230 second order, 269, 295 separation of variables m, 257 simultaneous, 312-315 singular solution of, 279 solution m series, 228, 325, 349, 364  
 
solution of, 226  
 
with constant coefficients, 287-315, 357  
 
with variable coefficients, 284, 315-349  
 
Differential expression, 225 Differential operators, 287-299, 357, 406  
 
Differentiation, of implicit functions, 132-142  
 
of series, 29, 33, 34, 80 partial, 123-171 term by term, 33, 34, 80 under integral sign, 167 Diffusion, 369, 427 Diffusivity, 368w.  
 
  Direction angles, 146, 398 Direction components, 146 Direction cosines, 146, 147, 151, 188, 194, 398  
  10b              
Direction ratios, 150, 151 Directional derivative, 143, 151, 219 (See also Gradient)  
 
Dirichlet conditions, 65 Discharge of condenser, 299 Discontinuity, finite, 64 Discriminant of cubic, 89 Distance, element of, 435 Distribution of charge, 487 Distribution charts, 506 Distribution turve, 504, 516 Distributive law, 399, 400 Divergence, of senes, 5, 8, 20 / of a vector, 411, 423, 438 Divergence theorem, 191, 415, 425, 428 dn uf 51  
 
Dot product, 399  
 
Double integrals, 173, 192, 202, 275 Drying of porous solids, 369 Dynamics, laws of, 231  
E  
c, 42 c'xy 250  
 
Effects, superposition of, 129, 223 E{k, <p), 48-51, 54 Elastic curve, 240, 307 Elasticity, 241, 422, 484-486 Electrodynamics, 422, 423n. Electron, 315  
 
  Electrostatic field, 475, 477, 479 Electrostatic force, 487 Electrostatic potential, 487 Electrostatics, 486-491 Element, of arc, 467 of area, 184, 190, 437 of distance, 435 of volume, 185, 187, 190, 437 Elementary functions, 315 expansion of, 35-46, 65-82, 465 Ellipse, area of, 177, 202 center of gravity of, 177 length of arc of, 47 Ellipsoidal coordinates, 433 Elliptic functions, 51  
  11a              
Minima (see Maxima and minima) Minimax, 162  
 
Modulus, of complex number, 441, 442  
 
of elliptic function, fc, 51 Moment, bending, 241 Moment of inertia, 177, 180, 182, 183, 187, 190, 191, 196, 241 Moments, method of, 544 Most probable value, 505 approximation for probability of, 511  
 
Motion, dead-beat, 304 fluid, 220 1aws of, 231, 234 of a membrane, 377 oscijlatory, 304 pendulum, 48, 234 simple harmonic, 233, 301, 314, 380  
 
under gravity, 232 Multiple integrals, 172-196 definition and evaluation of, 173, 179  
 
geometric interpretation of, 177 Multiplication, of complex numbers, 442  
 
of determinants, 110 of series, 21 of vectors, 399 Multiplicity of root, 93, 294 Multiplier, Lagrangian, 165 Multiply connected region, 205, 212, 455  
 
Mutually exclusive events, 497 N  
 
Nabla, or del, V, 194, 195, 407, 414, 422  
 
Newtonian potential, 196 Newton’s law, of attraction, 218 of cooling, 254 of dynamics, first law, 231 second law, 231, 272, 363 third law, 231, 234 of gravitation, 232 Newton’s method of solution, 97  
  11b              
Normal, to a curve, 144 to a plane, 146, 147 to a surface, 147, 188, 407 Normal approximation, 515 Normal derivative, 144, 146, 152 (See also Gradient)  
 
Normal distribution curve, 516 Normal equations, 537, 540 Normal form, 146  
 
Normal law (see Gaussian law of error)  
 
Normal line, 144, 146-149 Normal orthogonal functions, 81 Numbers, complex, 440 measure, 397  
 
Numerical integration, 554-560 Numerical solution of differential equations, 346  
O  
Odd function, 68 Operator, 528  
 
differential, 287-299, 357, 406 vector (see Curl; Divergence;  
 
Gradient; Nabla)  
 
Order of differential equation, 225 Ordinary differential equations, 225-* ' 349  
 
(See also Differential equations) Ordinary discontinuity, 64 Origin of a vector, 393 Orthogonal curves, 277, 468 Orthogonal functions, 81, 339, 345 Orthogonal systems, 434 ^Orthogonal trajectories, 277-279 Orthogonal vectors, 398 Oscillation of a spring, 299 Oscillatory motion, 304 Overdamped, 303  
 
P  
p series, 10 Parabola, 244 Parabolic coordinates, 439 Paraboloid, hyperbolic, 162 Parachute, 253, 255  
  12a              
Parallelogram law of addition, 394 Parameters, 277, 280 integrals containing, 167 variation of, 318  
 
Parametric equations, 143, 149, 150, 199, 215, 247  
 
Partial derivatives, 125-143, 153 Partial differential equation, 350-391  
 
derivation of, 351  
 
Fourier, 425  
 
integration of, 353  
 
Laplace's, 369, 382, 385, 386, 439  
 
linear, 357  
 
of elastic membrane, 377 of electric circuits, 386 of heat conduction, 367, 425 of vibrating string, 361 Partial differentials, 128-143 Partial differentiation, 123-171 Partial fractions, method of, 297 Partial sum, 4  
 
Particular integral, 290, 292, 297, 318, 359  
 
Particular solution, 230 Path, integrals independent of, 208, 216, 452, 455  
 
Pendulum, simple, 44, 234-238, 306 Periodic function, 64 Picard’s method, 347 Plane, equation of, 147 inclined, 280, 282, 306 normal form for, 146 tangent, 146-149 Point, of inflection, 159 singular, 451 Poisson formula, 512 Polar coordinates, 183,184, 276, 279, 386, 438  
 
Polygon, rectilinear, 478, 485 Polynomials, Legendre, 344, 384 Porous solids, drying of, 369 Potential, electrostatic, 487 gravitational, 219, 408 lines of equal, 277 Newtonian, 196  
 
velocity, 221, 222, 277, 430, 432, 453, 467, 480  
  12b              
Potential function, 219, 411 Power series, 30-62 differentiation of, 33, 34 evaluation of integrals by, 43-46 expansion in, 35-^16 functions defined by, 33 integration of, 33, 34 interval of convergence of, 31, 33 operations on, 33-35 theorems on, 31-35 uniform convergence of, 33 uniqueness of expansion in, 38 whose terms are infinite series, 40 Power series solutions of differential equations, 325-346 Precision constant, 520, 521 Pressure on dam, 484 Primitive, 458  
 
Principal part of increment, 128 Probability, 492-524 Probability curve, 521 Probable error, 521 Probable value, most, 505 probability of, 511 Product, of determinants, 110 scalar, 399 vector, 400  
 
Projection, Mercator’s, 479 stereographic, 479 Pulley, slipping of belt on, 239 pv diagram, 223  
Q  
 
Quadrature, mechanical, 554 Quotient, of complex numbers, 444 of power series, 40  
 
R  
 
Radius of convergence, 31, 33 Radius vector, 195 Rank of matrix, 115 Ratio test, 11, 20, 31 Reaction, chemical, 258 Rearrangement of series, 17 Rectilinear polygon, 478, 485 Recursion formula, 273, 328, 331, 334  
  13a              
Region, multiply connected, 205, 212, 455  
 
of integration, 173 simply connected, 205 Regula falsi, 101 Regular functions, 451 Remainder in Taylor’s series, 36-37 Remainder theorem, 92 Repeated trials, 501 Representation, applications of conformal, 479-491 Residuals, 534, 537 Resonance, 310 Riemann surface, 473 Right-handed system of axes, 397 Rod, flow of heat in, 373 vibitltions of, 366, 367 Roots, of equations, 83-102 isolation of, 92 theorems on, 92-94 of unity, w, o>2, 87 Rot (see Curl)  
 
Rotational field, 418 Rule, Cramer’s, 113 Simpson’s, 556 trapezoidal, J>56  
 
S  
 
  Scalar field, 406, 408 Scalar point function, 406, 418 Scalar product, 399 application of, 404 Scalars, 392  
 
Schwartz transformation, 478, 485, 491  
 
Seepage flow, 483 Separation of variables, 257 Sequences, 2  
 
fundamental principle of, 6 limit of, 3  
 
Series, asymptotic, 524 binomial, 40  
 
evaluation of integrals by, 43-46 Fourier, 63-82 infinite, 1-62  
 
integration and differentiation of, 29, 33, 34  
  13b              
Series, of constants, 6-22 of functions, 23-62 power, 30-62  
 
solution of differential equations by, 228, 325-346  
 
Taylor’s and Maclaurin’s, 37, 155, 228, 249, 464, 539 tests for convergence of, 9, 11, 12, 15, 20, 27, 31, 33  
 
theorems on, 17, 21, 27, 28, 29, 31, 33, 34, 36, 38  
 
uniform convergence of, 23-30 Shearing stresses, 485 Simple dosed curve, 200 Simple harmonic motion, 233, 301, 314, 380 equation of, 234 period of, 234  
 
Simple pendulum, 44, 234-238, 306 Simply connected region, 205 Simpson’s rule, 556 Simultaneous differential equations, 312-315  
 
Simultaneous equations, 102-122, 139-141 sin xt 41, 250 sin-1 x, 46  
 
Sine, hyperbolic, 247 length of curve, 55 power series for, 40, 41 Sme series, 73 Singular point, 451 Singular solution, 279 Singularities of function, 222 smh x, 247  
 
Sink {see Source and sink) Six-ordinate scheme, 548 Slipping of belt on pulley, 239 Small numbers, law of, 512  
 
sn u, 51  
 
Solenoidal field, 423 Solid angle, 195 Solids, drying of porous, 369 Solution, of cubic, 86-91  
 
of differential equations, 226, 228, 325  
 
general, 230, 290, 292, 350, 358 particular, 230  
  14a              
Elliptic integrals, 47-55 complete, 48  
 
first kind, F(k, *>), 48-55, 238 second kind, E(k, <*>), 48-54 third kind, II(n, k} <p), 50 Empirical formulas, 525-500 Entropy, 224 Envelope, 279 Equation, auxiliary, 292 Bernoulli’s, 286 Bessel’s, 332, 380 characteristic, 292 cubic, 80 Euler, 322 Fourier, 425 indicia!, 334 integral, 347  
 
Laplace’s, 195, 309, 382, 385, 380, 439, 451, 470, 481 Legendre’s, 342, 384 of continuity, 221, 429, 481 of plane, 147 wave, 432  
 
Equations, Cauchy-Uiemann, 221, 450, 455  
 
consistent, 117-122 dependent, 105 differential, 225-391 Euler’s, 430  
 
inconsistent, 105, 117-122 normal, 537, 540  
 
parametric, 143, 149, 150, 199, 215 representing special types of data, 528  
 
simultaneous, 102-122, 139-141 solution of, 83-122 systems of, 102-122  
 
hofnogeneous linear, 119-122 non-homogeneous linear, 113-119  
 
Error, Gaussian law of, 520, 536 mean, 516 mean absolute, 522 mean square, 522 of observation, 516 probable, 521 small, 56  
 
Error function, 516  
  14b              
Euler equation, 322 Euler formulas, 78, 251 Euler’s equations, 430 Euler’s theorem, 136 Evaluation of integrals, by differentiation, 169 m series, 43-46 Even function, 68 Events, dependent, 495 independent, 495 mutually exclusive, 497 Exact differential, 211, 212, 216, 222, 224, 262, 411, 418, 420 Exact differential equation, 262 Expansion, in Bessel functions, 339 in Fourier series, 65-82 m Legendre polynomials, 346 in Maclaunil’s series, 37 in power series, 37-46 in Taylor’s scries, 37 m trigonometric series, 65 uniqueness of, 38 Expectation, 500  
 
Expected number of successes, 508 Exponential form for trigonometric functions, 78, 251, 446, 447 Exponential function, expansion for, 42, 446  
 
Extremal values, 164 Extremum, 164  
F  
F(k, <?), 48-55 Factor, integrating, 265 Factor theorem, 92 Factonal, n!, approximation for, 509 (See also Gamma functions) Falling body, 58, 232 Field, 406  
 
conservative, 411 electrostatic, 475, 477, 479 irrotational, 418 Finite discontinuity, 64 Fitting, curve, 525-560 Flexure, 298  
 
Flow, of a liquid, 220, 424, 428, 477,  
 
. 478, 480-484  
  15              
Section  
 
Chapter VII  
 
ORDINARY DIFFERENTIAL EQUATIONS  
 
 
 
 
 
   
 
 
 
 
 
 
 
79. Equations of the First Order in Which One of the Variables Does  
 
 
 
 
 
 
 
 
86. A Non-linear Equation Reducible to Linear Form (Bernoulli’s  
 
 
 
 
89. 'Hie Meaning of the Operator  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter VIII  
 
PARTIAL DIFFERENTIAL EQUATIONS  
 
 
  16              
 
 
 
 
 
 
 
Chapter IV  
 
PARTIAL DIFFERENTIATION  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Chapter V  
 
MULTIPLK INTEGRALS  
 
 
 
 
 
 
 
 
 
Chapter VI LINE INTEGRAL  
 
 
 
 
 
 
 
  17              
Pao*  
 
Preface  
 
Chapter 1  
 
INFINITE SERIES  
 
 
 
 
 
 
 
 
 
 
 
 
 
13 J.3. Evaluation of Definite Integrals by Means of Power Series ... 43  
 
 
 
 
Chapter II FOURIER SERIES  
 
 
18. Dinchlct Conditions. Derivation of Fourier Coefficients .... 65  
 
 
 
 
 
 
 
Chapter III  
 
SOLUTION OF EQUATIONS  
 
 
 
 
 
vii  
  18              
 
 
 
 
 
 
 
 
 
Chapter IX VECTOR ANALYSIS  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chapter X  
 
COMPLEX VARIABLE  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Section  
 
Chapter XI PROBABILITY  
 
 
 
 
 
 
 
 
 
 
 
 
Chapter XII  
 
EMPIRICAL FORMULAS AND CURVE FITTING